帳號:guest(3.133.132.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳力揚
作者(外文):Chen, Li Yang
論文名稱(中文):建立核糖-5-磷酸異構酶A轉殖基因斑馬魚之肝癌生成研究
論文名稱(外文):The establishment of ribose-5-phosphate isomerase A transgenic zebrafish for hepatocarcinogenesis study
指導教授(中文):喻秋華
汪宏達
指導教授(外文):Yuh, Chiou Hwa
Wang, Horng Dar
口試委員(中文):胡清華
黃聲蘋
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080525
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:49
中文關鍵詞:斑馬魚肝癌核糖-5-磷酸異構酶A
外文關鍵詞:zebrafishhepatocarcinogenesisribose-5-phosphate isomerase A
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
過去研究已知非氧化五糖磷酸途徑參與腫瘤發生,核糖-5-磷酸異構酶A(RPIA)是非氧化五糖磷酸途徑關鍵酵素之一。然而,在人類肝細胞癌中RPIA如何造成癌化尚不十分清楚。之前我們利用肝癌細胞株發現RPIA可經由降低PP2A來增加ERK磷酸化以促進細胞增殖及菌落形成。我們還利用RPIA過度表現的細胞株移植至裸鼠皮下的動物模式,證明過度表現RPIA可造成腫瘤的生長。這研究揭示人們對RPIA促成肝癌的新理解與提出RPIA作為治療肝癌的標靶的可能性。然而,過量表現RPIA造成肝癌的轉基因動物模型仍不存在。
斑馬魚已成為研究癌症和藥物開發的優秀模型。因此,在此論文中,我們使用肝特異性啟動子驅動RPIA表現在斑馬魚肝臟,利用此RPIA轉基因魚研究肝癌發生進程。使用F2的RPIA轉基因魚,我們收集了來自五個不同階段,3,5,7,9及11個月肝臟標本,利用QPCR分析脂肪生成因子,脂肪生成酶,纖維化標記基因和細胞週期的相關基因的表達。我們發現在RPIA轉基因魚5個月大時,脂肪生成因子,脂肪生成酶表現上升,同時使用HE染色及油紅染色檢測油滴,發現5個月時有脂肪肝形成。在RPIA轉基因魚7個月大時,纖維化標記基因表現上升,同時使用天狼星紅染色檢測纖維化,發現7個月時有肝纖維化。在RPIA轉基因魚9及11個月大時,細胞週期相關基因表現上升,同時使用HE染色檢測組織病理的變化,發現肝細胞增生和肝細胞癌。這些結果表明,在斑馬魚肝臟過度表達RPIA能促進肝癌的進展。
之前我們利用肝癌細胞株,已知過度表達RPIA能活化ERK信號傳導,在大腸癌細胞株中,過度表達RPIA能活化β連環蛋白途徑。在RPIA轉基因斑馬魚肝癌模型,我們使用免疫染色審查了ERK磷酸化和β-catenin蛋白量。我們發現在RPIA轉基因魚9及11個月大時,ERK磷酸化上升和β-catenin蛋白量也增加,並且在此階段PCNA增殖標記表現也上升。在將來我們希望利用RPIA轉基因斑馬魚肝癌模型篩選出治療手段,以防止RPIA介導的肝癌形成。
The non-oxidative pentose phosphate pathway is known involved in tumorigenesis. Yet the role of ribose-5-phosphate isomerase A (RPIA) in human hepatocellular carcinoma (HCC) is not well understood. Previously, we have discovered that RPIA regulates hepatocarcinogenesis via PP2A and ERK signaling in vitro using cell culture. We also demonstrated that RPIA regulates tumor growth in nude mice xenotransplant RPIA overexpressed cells. It sheds new light on RPIA as a potential biomarker and target for liver cancer therapy. However, the RPIA transgenic animal HCC model is still missing.
Zebrafish has become an excellent model for cancer study and drug discovery. Hence, we have generated RPIA transgenic fish using liver specific promoter drive human RPIA in zebrafish and examine the hepatocarcinogenesis at different stage. Using F2 of Tg (fabp10a: RPIA) transgenic fish, we collected the liver specimens from five different stage, 3, 5, 7, 9 and 11 months respectively, and analyzed the expression of lipogenic factor, lipogenic enzyme, fibrosis markers and cell cycle related genes using QPCR. The lipogenic factor and enzyme were up-regulated at 5 months, and using HE stain and Oil Red stain, and the liver has become fatty liver. At 7 months, we discovered the increasing expression of fibrosis markers, and using Sirius red staining, we found the hepatocyte has fibrosis. At 9 and 11 months, the cell cycle/proliferation markers were up-regulated; via HE staining we found the 9 to 11 months old fish showed hyperplasia and hepatocellular carcinoma. These results revealed that RPIA overexpression in zebrafish could promote liver cancer progression.
RPIA has been known to activate ERK signaling in liver cancer cell lines, and β-catenin pathway in colorectal cancer cell lines. We have examined the p-ERK and β-catenin by immunostaining, and found both p-ERK and β-catenin were activated at 9 and 11 months, and PCNA proliferation markers are also activated at this stage. In the future, we would like to use the RPIA transgenic fish liver cancer model to screen for therapeutic means for preventing RPIA mediated HCC formation.
誌謝 ............................................................................................................................... II
中文摘要 ...................................................................................................................... III
Abstract ........................................................................................................................IV
Table of contents ........................................................................................................... V
Chapter 1 Introduction ................................................................................................... 1
1.1 Hepatocellular carcinoma (HCC) .................................................................. 1
1.2 PPP pathway .................................................................................................. 2
1.3 ERK signaling ................................................................................................ 3
1.4 Zebrafish models .............................................................................................. 4
Chapter 2 Materials and Methods .................................................................................. 7
2.1 Transgenic zebrafish lines ................................................................................ 7
2.2 Zebrafish maintenance ..................................................................................... 8
2.3 Hematoxylin and eosin stain (HE stain) .......................................................... 8
2.4 Oil red staining ................................................................................................. 9
2.5 Sirius red staining ............................................................................................ 9
2.6 IHC staining ................................................................................................... 10
2.7 Liver tissue collection and paraffin section ................................................... 11
2.8 Total RNA isolation ....................................................................................... 11
2.9 Reverse transcription-polymerase chain reaction (RT-PCR) ......................... 12
2.10 Quantitative polymerase chain reaction (QPCR) ......................................... 13
2.12 Statistical analysis ........................................................................................ 14
Chapter 3 Results ......................................................................................................... 15
3.1 Expression of RPIA is dramatically increased in transgenic zebrafish compared to control zebrafish. ..................................................................... 15
3.2 Expression of lipogenic factors/enzyme were increased and accompanied with liver steatosis. ....................................................................................... 16
3.3 Expression of fibrosis markers were increased and liver fibrosis were obvious. ...................................................................................................................... 17
3.4 Expression of cell cycle/proliferation marker genes was obvious and accompanied with liver hyperplasia or HCC. .............................................. 17
3.5 PCNA is activated at 9 and 11 months and compared to HE stain with the same area. ..................................................................................................... 18
3.6 p-ERK is activated at 9 and 11 months of RPIA transgenic fish. .................. 19
3.7 β-catenin is activated at 9 and 11 months of RPIA transgenic fish. ............... 19
VI
Chapter 4 Discussion ................................................................................................... 21
Figures and Tables ....................................................................................................... 25
Fig. 1. Expression of RPIA is dramatically increased compared to control. ....... 25
Fig. 2. Expression of lipogenic factors and lipogenic enzyme were up at 5~7 months of RPIA transgenic fish. ............................................................... 26
Fig. 3. Oil red stain reveals the steatosis was developed at 5 and 7 months of RPIA transgenic fish. ................................................................................. 27
Fig. 4. Expression of fibrosis markers were obvious at 7 months of age. The QPCR analysis of fibrosis marker genes in RPIA transgenic fish. ........ 28
Fig. 5. Sirius Red stain reveals the fibrosis were developed at 7 months of RPIA transgenic fish. ............................................................................................. 29
Fig. 6. Expression of cell cycle/proliferation marker genes was obvious at 11 months of age. .............................................................................................. 30
Fig. 7. HE stain of all the stages’ hepatocyte and representative images from 9 and 11 months. ............................................................................................. 31
Fig. 8. PCNA immunostaining reveals the hyperplasia and HCC were developed at 9, 11 months of RPIA transgenic fish. ..................................................... 32
Fig. 9. p-ERK immunostaining reveals the phosphorylation of ERK were developed at 9 and 11 months of RPIA transgenic fish. .............................. 33
Fig. 10. β-catenin immunostaining reveals the β-catenin were enhanced at 9 and 11 months of RPIA transgenic fish. ............................................................. 34
Fig. 11. RPIA overexpressed in liver and colon cancer cell lines, and in transgenic fish caused p-ERK increase, -catenin increase and hepatocarcinogenesis. .................................................................................. 35
Fig. 12. Knockdown of RPIA in liver, colon and lung cancer cell lines. ............. 36
Table 1 The primer sequence of QPCR for lipogenic factors (pparg, srebp1, chrebp); lipogenic enzymes (dgat2, fasn, pap); fibrosis marker genes (col1a1a, ctgfa, hpse); cell cycle-related genes (ccne1, cdk1, cdk2). .......... 37
Supplementary Figure 1 Cloning of pTol2-fabp10a:RPIA; myl7: EGFP ............ 38
Appendix ...................................................................................................................... 40
Appendix 1. Pentose Phosphate Pathway ............................................................ 40
Appendix 2. Typical histological features of liver of HBx and src transgenic fish (B-H) in comparison with these of GFP-mCherry transgenic fish . 41
References .................................................................................................................... 43
Bannasch, P., Klimek, F., and Mayer, D. (1997). Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone. J Bioenerg Biomembr 29, 303-313.
Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37-40.
Ciou, S.C., Chou, Y.T., Liu, Y.L., Nieh, Y.C., Lu, J.W., Huang, S.F., Chou, Y.T., Cheng, L.H., Lo, J.F., Chen, M.J., et al. (2015). Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. Int J Cancer 137, 104-115.
El-Serag, H.B., and Rudolph, K.L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576.
Farazi, P.A., and DePinho, R.A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674-687.
Feitsma, H., and Cuppen, E. (2008). Zebrafish as a cancer model. Mol Cancer Res 6, 685-694.
Global Burden of Disease Study, C. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743-800.
Hove-Jensen, B. (1988). Mutation in the phosphoribosylpyrophosphate synthetase
44
gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. J Bacteriol 170, 1148-1152.
Jain, M., Brenner, D.A., Cui, L., Lim, C.C., Wang, B., Pimentel, D.R., Koh, S., Sawyer, D.B., Leopold, J.A., Handy, D.E., et al. (2003). Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ Res 93, e9-16.
Junttila, M.R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Ala-aho, R., Nielsen, C., Ivaska, J., Taya, Y., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell 130, 51-62.
Kalev, P., and Sablina, A.A. (2011). Protein phosphatase 2A as a potential target for anticancer therapy. Anticancer Agents Med Chem 11, 38-46.
Kao, J.H., Chen, P.J., and Chen, D.S. (2010). Recent advances in the research of hepatitis B virus-related hepatocellular carcinoma: epidemiologic and molecular biological aspects. Adv Cancer Res 108, 21-72.
Kawakami, K., Shima, A., and Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403-11408.
Lam, S.H., Wu, Y.L., Vega, V.B., Miller, L.D., Spitsbergen, J., Tong, Y., Zhan, H.Q., Govindarajan, K.R., Lee, S., Mathavan, S., et al. (2006). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor
45
progression. Nature Biotechnology 24, 73-75.
Langbein, S., Zerilli, M., Zur Hausen, A., Staiger, W., Rensch-Boschert, K., Lukan, N., Popa, J., Ternullo, M.P., Steidler, A., Weiss, C., et al. (2006). Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94, 578-585.
Liang, Y., Liu, J., and Feng, Z. (2013). The regulation of cellular metabolism by tumor suppressor p53. Cell & bioscience 3, 9.
Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353-367.
Longo, V.D., Lieber, M.R., and Vijg, J. (2008). Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol 9, 903-910.
Lu, J.W., Yang, W.Y., Tsai, S.M., Lin, Y.M., Chang, P.H., Chen, J.R., Wang, H.D., Wu, J.L., Jin, S.L., and Yuh, C.H. (2013). Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 8, e76951.
Min, L., He, B., and Hui, L. (2011). Mitogen-activated protein kinases in hepatocellular carcinoma development. Semin Cancer Biol 21, 10-20.
Mitsuyama, T. (1979). Experimental and clinical studies on ribosephosphate isomerase (author's transl). Hokkaido Igaku Zasshi 54, 387-400.
Mudbhary, R., Hoshida, Y., Chernyavskaya, Y., Jacob, V., Villanueva, A., Fiel, M.I., Chen, X., Kojima, K., Thung, S., Bronson, R.T., et al. (2014). UHRF1 overexpression
46
drives DNA hypomethylation and hepatocellular carcinoma. Cancer cell 25, 196-209.
Nordenstedt, H., White, D.L., and El-Serag, H.B. (2010). The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42 Suppl 3, S206-214.
Patra, K.C., and Hay, N. (2014). The pentose phosphate pathway and cancer. Trends Biochem Sci 39, 347-354.
Pawelec, G., and Solana, R. (2008). Are cancer and ageing different sides of the same coin? Conference on Cancer and Ageing. EMBO Rep 9, 234-238.
Rakasha Mudbhary, Y.H., Yelena Chernyavskaya (2014). UHRF1 Overexpression Drives DNA Hypomethylation and Hepatocellular Carcinoma. Cancer cell, 196-209.
Ramos-Montoya, A., Lee, W.N., Bassilian, S., Lim, S., Trebukhina, R.V., Kazhyna, M.V., Ciudad, C.J., Noe, V., Centelles, J.J., and Cascante, M. (2006). Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. Int J Cancer 119, 2733-2741.
Rao, R.K., and Clayton, L.W. (2002). Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem Biophys Res Commun 293, 610-616.
Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E., and Ghigo, D. (2012). The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53, 421-436.
Schmidt, C.M., McKillop, I.H., Cahill, P.A., and Sitzmann, J.V. (1997). Increased
47
MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun 236, 54-58.
Seyfried, T.N., and Shelton, L.M. (2015). Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol 3, 43.
Spitsbergen, J.M., and Kent, M.L. (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 31 Suppl, 62-87.
Stuart, G.W., McMurray, J.V., and Westerfield, M. (1988). Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development (Cambridge, England) 103, 403-412.
Stuart, G.W., Vielkind, J.R., McMurray, J.V., and Westerfield, M. (1990). Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development (Cambridge, England) 109, 577-584.
Thisse, C., and Zon, L.I. (2002). Development - Organogenesis - Heart and wood formation from the zebrafish point of view. Science 295, 457-462.
Tong, X., Zhao, F., and Thompson, C.B. (2009). The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19, 32-37.
Urasaki, A., Morvan, G., and Kawakami, K. (2006). Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639-649.
48
Wang, C.T., Chen, Y.C., Wang, Y.Y., Huang, M.H., Yen, T.L., Li, H., Liang, C.J., Sang, T.K., Ciou, S.C., Yuh, C.H., et al. (2012). Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell 11, 93-103.
Weinstein, B. (2002). Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol 12, 439-445.
Xu, X., Zur Hausen, A., Coy, J.F., and Lochelt, M. (2009). Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer 124, 1330-1337.
Ying, H., Kimmelman, A.C., Lyssiotis, C.A., Hua, S., Chu, G.C., Fletcher-Sananikone, E., Locasale, J.W., Son, J., Zhang, H., Coloff, J.L., et al. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670.
Yuan, W., Wu, S., Guo, J., Chen, Z., Ge, J., Yang, P., Hu, B., and Chen, Z. (2010). Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. Cancer Biol Ther 9, 710-716.
Zang, L., Shimada, Y., Nishimura, Y., Tanaka, T., and Nishimura, N. (2015). Repeated Blood Collection for Blood Tests in Adult Zebrafish. J Vis Exp, e53272.
Zhang, S., Yang, J.H., Guo, C.K., and Cai, P.C. (2007). Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett 253, 108-114.
Zon, L.I., and Peterson, R.T. (2005). In vivo drug discovery in the zebrafish. Nat Rev
49
Drug Discov 4, 35-44.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *