帳號:guest(3.21.93.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李崇豪
作者(外文):Lee, Chung Hao
論文名稱(中文):埃及藍睡蓮種子的冷凍保存 — 使用添加穀胱甘肽的植物抗凍配方
論文名稱(外文):Cryopreservation of seeds of blue waterlily (Nymphaea caerulea) using glutathione adding plant vitrification solution, PVS+
指導教授(中文):李家維
指導教授(外文):Li, Chia Wei
口試委員(中文):黃貞祥
鄭惠春
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:103080521
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:78
中文關鍵詞:埃及藍睡蓮異儲型種子冷凍保存玻璃化植物抗凍配方自由基程序性細胞凋亡
外文關鍵詞:Blue waterlilyNymphaea caerulearecalcitrantcryopreservationvitrificationPVS3ROSPCD
相關次數:
  • 推薦推薦:2
  • 點閱點閱:1516
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
這篇論文主要是在討論如何冷凍保存埃及藍睡蓮(Nymphaea caerulea)的種子。由於缺乏對乾燥以及低溫的容忍力,埃及藍睡蓮被認為是很難用傳統方法長期保存的異儲型種子(recalcitrant seed)。冷凍保存(cryopreservation)是一種有效率、經濟的保存異儲型種子的方法。然而種子不能直接冷凍保存,需要先透過植物抗凍配方(Plant vitrification solution)的處理來達到玻璃化(vitrification)的狀態來防止冰晶的形成。然而最常被廣泛使用的植物玻璃化配方PVS3對埃及藍睡蓮的冷凍保存效果並不佳。對於PVS3的效果不佳我提出了兩個假設,冰晶形成以及自由基造成的程序性細胞死亡(ROS-related programmed cell death)。冰晶形成的溫度區間為攝氏零度以下到玻璃化溫度(glass transition temperature)以上。因此發展出玻璃化溫度較高的植物抗凍配方可以縮小冰晶形成的溫度區間進而減少冰晶形成。然而經由玻璃化溫度較高的植物抗凍配方處理的藍睡蓮種子並沒有回到一般水準。PVS+,一種添加了穀胱甘肽(glutathione)的植物抗凍配方能夠抑制因冷凍保存所產生的自由基累積並使處理過種子的發芽率能回復到一般水準。之前的共識認為種子直接冷凍保存會失敗是由於冰晶形成,但我的發現認為先前的共識過於草率、簡略。我的發現認為埃及藍睡蓮種子直接冷凍保存會失敗的理由是因為低溫造成自由基的累積進而傷害種子,而抗氧化劑可以避免這些傷害。
This thesis discussed how to cryopreserve blue waterlily (Nymphaea caerulea) seeds. Due to lack of desiccation and low-temperature tolerance, N. caerulea is considered as recalcitrant, which hard to long-term storage by conventional method. Cryopreservation is an effective and economical method to recalcitrant seeds preservation. Seeds need to be vitrified using the plant vitrification solution (PVS) before cryopreservation. PVS3, a widely used PVS, was not effective in N. caerulea seeds cryopreservation. I hypothesized two reasons that caused PVS3 inefficiency, ice crystals forming and reactive oxygen species (ROS) - related programmed cell death (PCD). Ice crystals form at temperature from below 0℃ to glass transition temperature (Tg). Therefore, developing a PVS with higher Tg can narrow the temperature range, therefore producing less ice crystals forming. Germination rate of seeds treated with higher Tg PVSs were not increased to the normal level. However, PVS+, a glutathione (GSH) adding PVS, decreased ROS accumulation induced by cryopreservation and increased the germination rate to normal level. Previous consensus asuggested that ice crystals forming may be the main reason for cryopreservation inefficiency but my findings indicated that this consensus is oversimplified. It also suggested that ROS accumulation harmed seeds after cryopreservation and antioxidants may prevent the damage.
Abstract………………………………………………………..1
摘要……………………………………………………………2
Key words………………………………………………………3
Abbreviation…………………………………………………...4
Introduction
Freshwater aquatic plants are facing seriously danger of extinction and need to be protected……………...………………………………………………...………5
It is important to conserve Nymphaea caerulea…………………………………..6
Diverse maneuvers to conserve freshwater aquatic plants………………………8
Different methods to store seeds base on seed storage characteristics…………..9
Store recalcitrant seeds by cryopreservation…………………………………...10
PVSs are good but there is still room for improvement………………………...11
Glass transition temperature (Tg) is a key point to ice crystals forming…….12
ROS-induced PCD causes failure of existed PVSs cryopreservation………….12
Methods and Materials………………………………………14
Results
The seed of N. caerulea is recalcitrant…………………………………………..20
Cryopreservation of N. caerulea seeds by PVS3 is not effective enough……...21
New PVS with high Tg might not be an alternative option to cryopreservation…………………………………………………………………22
PVS+ can increase germination rate in cryopreservation……………………..23
Amount of H2O2 truly increased after cryopreservation and decreased after adding GSH………………………………………………………………………24
Discussion…………………………………………………….26
Flow chart……………………….……………………………31
Tables and Figures…………………………………………...33
Supplementary data………………………………………….41
Appendix……………………………………………………...44
References…………………………………………………….69
1 Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29, 344-358, doi:10.1899/08-171.1 (2010).
2 Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81, 163-182, doi:10.1017/S1464793105006950 (2006).
3 Saunders, D. L., Meeuwig, J. J. & Vincent, A. C. J. Freshwater protected areas: Strategies for conservation. Conserv Biol 16, 30-41, doi:DOI 10.1046/j.1523-1739.2002.99562.x (2002).
4 Hay, F., Probert, R., Marro, J. & Dawson, M. Towards the ex situ conservation of aquatic angiosperms: a review of seed storage behaviour. Seed Biology: Advances and Applications, 161-177, doi:Doi 10.1079/9780851994048.0161 (2000).
5 Emboden, W. A. Transcultural Use of Narcotic Water Lilies in Ancient Egyptian and Maya Drug Ritual. J Ethnopharmacol 3, 39-83, doi:Doi 10.1016/0378-8741(81)90013-1 (1981).
6 Kulus, D. & Zalewska, M. Cryopreservation as a tool used in long-term storage of ornamental species - A review. Scientia Horticulturae 168, 88-107, doi:10.1016/j.scienta.2014.01.014 (2014).
7 Agnihotri, V. K. et al. Antioxidant constituents of Nymphaea caerulea flowers. Phytochemistry 69, 2061-2066, doi:10.1016/j.phytochem.2008.04.009 (2008).
8 Fossen, T. & Andersen, O. M. Delphinidin 3 '-galloylgalactosides from blue flowers of Nymphaea caerulea. Phytochemistry 50, 1185-1188, doi:Doi 10.1016/S0031-9422(98)00649-9 (1999).
9 Fossen, T., Larsen, A., Kiremirec, B. T. & Andersen, O. M. Flavonoids from blue flowers of Nymphaea caerulea. Phytochemistry 51, 1133-1137, doi:Doi 10.1016/S0031-9422(99)00049-7 (1999).
10 Bakowska-Barczak, A. Acylated anthocyanins as stable, natural food colorants-a review. Polish Journal of Food and Nutrition Sciences (Poland) (2005).
11 Huxley, R. R. & Neil, H. A. W. The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr 57, 904-908, doi:10.1038/sj.ejcn.1601624 (2003).
12 Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39, 44-84, doi:10.1016/j.biocel.2006.07.001 (2007).
13 Juffe, D. Nymphaea thermarum. The IUCN Red List of Threatened Species 2010. (2010).
14 Li, D. Z. & Pritchard, H. W. The science and economics of ex situ plant conservation. Trends Plant Sci 14, 614-621, doi:10.1016/j.tplants.2009.09.005 (2009).
15 Chin, H. F. K., B.; Stanwood, P. C. Seed moisture: recalcitrant vs. orthodox seeds., (Crop Science Society of America, 1989).
16 Walters, C., Berjak, P., Pammenter, N., Kennedy, K. & Raven, P. Preservation of Recalcitrant Seeds. Science 339, 915-916, doi:10.1126/science.1230935 (2013).
17 Zaritzky, N. E. in Water Stress in Biological, Chemical, Pharmaceutical and Food Systems (eds F. Gustavo Gutiérrez-López et al.) 231-244 (Springer New York, 2015).
18 Engelmann, F. Plant cryopreservation: Progress and prospects. In Vitro Cell Dev-Pl 40, 427-433, doi:10.1079/Ivp2004541 (2004).
19 Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev-Pl 47, 5-16, doi:10.1007/s11627-010-9327-2 (2011).
20 Pegg, D. E. Principles of cryopreservation. Methods Mol Biol 368, 39-57, doi:10.1007/978-1-59745-362-2_3 (2007).
21 Wesley-Smith, J., Berjak, P., Pammenter, N. W. & Walters, C. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Ann Bot-London 113, 695-709, doi:10.1093/aob/mct284 (2014).
22 Wesley-Smith, J., Walters, C., Pammenter, N. W. & Berjak, P. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. Ann Bot-London 115, 991-1000, doi:10.1093/aob/mcv009 (2015).
23 Gonzalez-Arnao, M. T., Panta, A., Roca, W. M., Escobar, R. H. & Engelmann, F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Org 92, 1-13, doi:10.1007/s11240-007-9303-7 (2008).
24 Sakai, A. & Engelmann, F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. Cryoletters 28, 151-172 (2007).
25 Sakai, A., Hirai, D. & Niino, T. in Plant Cryopreservation: A Practical Guide (ed Barbara M. Reed) 33-57 (Springer New York, 2008).
26 Sun, W. Q. & Leopold, A. C. Cytoplasmic vitrification acid survival of anhydrobiotic organisms. Comp Biochem Phys A 117, 327-333, doi:Doi 10.1016/S0300-9629(96)00271-X (1997).
27 Uragami, A., Sakai, A., Nagai, M. & Takahashi, T. Survival of Cultured-Cells and Somatic Embryos of Asparagus-Officinalis Cryopreserved by Vitrification. Plant Cell Rep 8, 418-421 (1989).
28 Sakai, A., Kobayashi, S. & Oiyama, I. Cryopreservation of Nucellar Cells of Navel Orange (Citrus-Sinensis Osb Var Brasiliensis Tanaka) by Vitrification. Plant Cell Rep 9, 30-33 (1990).
29 Nishizawa, S., Sakai, A., Amano, Y. & Matsuzawa, T. Cryopreservation of Asparagus (Asparagus-Officinalis L) Embryogenic Suspension Cells and Subsequent Plant-Regeneration by Vitrification. Plant Sci 91, 67-73, doi:Doi 10.1016/0168-9452(93)90189-7 (1993).
30 Osorio-Saenz, A., Mascorro-Gallardo, J. O., Valle-Sandoval, M. D., Gonzalez-Arnao, M. T. & Engelmann, F. GENETICALLLY ENGINEREED TREHALOSE ACCUMULATION IMPROVES CRYOPRESERVATION TOLERANCE OF CHRYSANTHEMUM (Dendranthema grandiflorum KITAM) SHOOT-TIPS. Cryoletters 32, 477-486 (2011).
31 Suzuki, M., Tandon, P., Ishikawa, M. & Toyomasu, T. Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol Rep 2, 123-131, doi:10.1007/s11816-008-0056-5 (2008).
32 Volk, G. M. & Walters, C. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52, 48-61, doi:10.1016/j.cryobiol.2005.09.004 (2006).
33 Moges, A. D., Shibli, R. A. & Karam, N. S. Cryopreservation of African violet (Saintpaulia ionantha Wendl.) shoot tips. In Vitro Cell Dev-Pl 40, 389-395, doi:10.1079/Ivp2004536 (2004).
34 Baghdadi, S. H. et al. Cryopreservation by Vitrification of Embryogenic Callus of Wild Crocus (Crocus hyemalis and Crocus moabiticus). Acta Hortic 908, 239-246 (2011).
35 Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329-335 (1998).
36 Capaccioli, S. & Ngai, K. L. Resolving the controversy on the glass transition temperature of water? J Chem Phys 135, 104504, doi:10.1063/1.3633242 (2011).
37 Teixeira, A. S., Faltus, M., Zamecnik, J., Gonzalez-Benito, M. E. & Molina-Garcia, A. D. Glass transition and heat capacity behaviors of plant vitrification solutions. Thermochim Acta 593, 43-49, doi:10.1016/j.tca.2014.08.015 (2014).
38 Foyer, C. H., LopezDelgado, H., Dat, J. F. & Scott, I. M. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plantarum 100, 241-254, doi:DOI 10.1034/j.1399-3054.1997.1000205.x (1997).
39 Petrov, V., Hille, J., Mueller-Roeber, B. & Gechev, T. S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6, doi:ARTN 69
10.3389/fpls.2015.00069 (2015).
40 Zhang, D. et al. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep 34, 1499-1513, doi:10.1007/s00299-015-1802-0 (2015).
41 Kranner, I., Birtic, S., Anderson, K. M. & Pritchard, H. W. Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death? Free Radical Bio Med 40, 2155-2165, doi:10.1016/j.freeradbiomed.2006.02.013 (2006).
42 Wang, Z. C. & Deng, X. X. Cryopreservation of shoot-tips of citrus using vitrification: Effect of reduced form of glutathione. Cryoletters 25, 43-50 (2004).
43 Jian, P. et al. Ammonium Molybdate Method for Detecting the Activities of Rice Catalase [J]. Chinese Agricultural Science Bulletin 16, 016 (2009).
44 McIntyre, R. L. & Fahy, G. M. Aldehyde-stabilized cryopreservation. Cryobiology 71, 448-458, doi:10.1016/j.cryobiol.2015.09.003 (2015).
45 Xu, X.-B., Cai, Z.-G., Gu, Q.-Q. & Zhang, Q.-M. Cell ultrastructure of kiwifruit (Actinidia chinensis) shoot tips during cryopreservation. Agricultural Sciences in China 5, 587-590 (2006).
46 Lambardi, M., De Carlo, A. & Capuana, M. Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification/one-step freezing. Cryoletters 26, 185-192 (2005).
47 Keller, E., Senula, A. & Zanke, C. in I International Symposium on Cryopreservation in Horticultural Species 908. 495-508.
48 Niino, T., Takano, J., Sunaga, T. & Kobayashi, M. Cryopreservation of in vitro grown Chinese leek [Allium tuberosum]'Nakamidori'shoot tips by vitrification. Horticultural Research (Japan) (2003).
49 Baek, H.-J., Kim, H.-H., Cho, E.-G., Chae, Y.-A. & Engelmann, F. Importance of Explant Size and Origin and of Preconditioning Treatments for Cryopreservation of Garlic Shoot Apices by Vitrification. Cryoletters 24, 381-388 (2003).
50 Ellis, D., Skogerboe, D., Andre, C., Hellier, B. & Volk, G. Implementation of garlic cryopreservation techniques in the national plant germplasm system. Cryoletters 27, 99-106 (2006).
51 Kim, H.-H. et al. Cryopreservation of garlic shoot tips by vitrification: Effects of dehydration, rewarming, unloading and regrowth conditions. Cryoletters 25, 59-70 (2004).
52 Volk, G. M., Maness, N. & Rotindo, K. Cryopreservation of Garlic (Allium Sativum L.) Using Plant Vitrification Solution 2. Cryoletters 25, 219-226 (2004).
53 Kim, H.-H. et al. Cryobanking of Korean Allium germplasm collections: results from a 10 year experience. Cryoletters 33, 45-57 (2012).
54 Keller, E. J. & Senula, A. Micropropagation and cryopreservation of garlic (Allium sativum L.). Protocols for Micropropagation of Selected Economically-Important Horticultural Plants, 353-368 (2013).
55 Zhang, Y., Zhang, X., Pang, J. & Liu, P. Cryopreservation of in vitro-grown shoot tips of Amorphophallus by vitrification. Zuo wu xue bao 27, 97-102 (2000).
56 Al-Ababneh, S., Shibli, R., Karam, N. & Shatnawi, M. Cryopreservation of bitter almond (Amygdalus communis L.) shoot tips by encapsulation-dehydration and vitrification. Advances in horticultural science, 15-20 (2003).
57 Turner, S. et al. Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot-London 87, 371-378 (2001).
58 Gonzáiez-Arnaor, M. T. et al. CRYOPRESERVATION OF PINEAPPLE (Antnas comosus) APICES. Cryo-Lett 19, 375-382 (1998).
59 Yan, L., Nasrallah, M. & Ronggu, G. Cryopreservation of Arabidopsis thaliana seedlings by vitrification. Forestry Studies in China 1, 11-18 (1999).
60 Towill, L. E., Bonnart, R. & Volk, G. M. Cryopreservation of Arabidopsis thaliana shoot tips. Cryoletters 27, 353-360 (2006).
61 Gagliardi, R., Pacheco, G., Valls, J. & Mansur, E. Cryopreservation of cultivated and wild Arachis species embryonic axes using desiccation and vitrification methods. Cryoletters 23, 61-68 (2002).
62 Phunchindawan, M., Hirata, K., Sakai, A. & Miyamoto, K. Cryopreservation of encapsulated shoot primordia induced in horseradish (Armoracia rusticana) hairy root cultures. Plant Cell Rep 16, 469-473 (1997).
63 Thammasiri, K. et al. in IUFRO Seed Symposium 1998" Recalcitrant seeds": Proceedings of the Conference, Kuala Lumpur, Malaysia, 12-15 October 1998. 153-158 (Forest Research Institute Malaysia).
64 Kohmura, H., Sakai, A., Chokyu, S. & Yakuwa, T. Cryopreservation of in vitro-cultured multiple bud clusters of asparagus (Asparagus officinalis L. cv Hiroshimagreen (2n= 30) by the techniques of vitrification. Plant Cell Rep 11, 433-437 (1992).
65 Nishizawa, S., Sakai, A., Amano, Y. & Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91, 67-73 (1993).
66 Heringer, A. S., Steinmacher, D. A., Schmidt, É. C., Bouzon, Z. L. & Guerra, M. P. Survival and ultrastructural features of peach palm (Bactris gasipaes, Kunth) somatic embryos submitted to cryopreservation through vitrification. Protoplasma 250, 1185-1193 (2013).
67 Vandenbussche, B., Weyens, G. & De Proft, M. Cryopreservation of in vitro sugar beet (Beta vulgaris L.) shoot tips by a vitrification technique. Plant Cell Rep 19, 1064-1068 (2000).
68 Ishikawa, K. et al. Cryopreservation of zygotic embryos of a Japanese terrestrial orchid (Bletilla striata) by vitrification. Plant Cell Rep 16, 754-757 (1997).
69 Hirano, T., Godo, T., Mii, M. & Ishikawa, K. Cryopreservation of immature seeds of Bletilla striata by vitrification. Plant Cell Rep 23, 534-539 (2005).
70 詹金鳳. 臺灣原生藥用植物艾納香玻璃化法超低溫冷凍保存流程之探討. 中興大學生命科學系所學位論文, 1-98 (2010).
71 Mubbarakh, S. A., Rahmah, S., Rahman, Z. A., Sah, N. N. M. & Subramaniam, S. Cryopreservation of brassidium shooting star orchid using the PVS3 method supported with preliminary histological analysis. Applied biochemistry and biotechnology 172, 1131-1145 (2014).
72 Ishikawa, M., Tandon, P., Suzuki, M. & Yamaguishi-Ciampi, A. Cryopreservation of bromegrass (Bromus inermis Leyss) suspension cultured cells using slow prefreezing and vitrification procedures. Plant Sci 120, 81-88 (1996).
73 Tsai, S.-F., Yeh, S.-D., Chan, C.-F. & Liaw, S.-I. High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of transgenic papaya lines. Plant Cell, Tissue and Organ Culture (PCTOC) 98, 157-164 (2009).
74 Jeon, S. M., Arun, M., Lee, S.-Y. & Kim, C. K. Application of encapsulation-vitrification in combination with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips. Scientia Horticulturae 194, 91-99 (2015).
75 Wang, R.-R. et al. Shoot recovery and genetic integrity of Chrysanthemum morifolium shoot tips following cryopreservation by droplet-vitrification. Scientia Horticulturae 176, 330-339 (2014).
76 da Silva Cordeiro, L., Simões-Gurgel, C., Albarello, N. & Engelmann, F. Cryopreservation of in vitro-grown shoot tips of Cleome rosea Vahl (Cleomaceae) using the V cryo-plate technique. In Vitro Cell Dev-Pl 51, 688-695 (2015).
77 Engelmann-Sylvestre, I. & Engelmann, F. Cryopreservation of in vitro-grown shoot tips of Clinopodium odorum using aluminium cryo-plates. In Vitro Cell Dev-Pl 51, 185-191 (2015).
78 Sajini, K., Karun, A., Amarnath, C. & Engelmann, F. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification. Cryoletters 32, 317-328 (2011).
79 Osorio-Saenz, A., Mascorro-Gallardo, J. O., Valle-Sandoval, M. d. R., González-Arnao, M. T. & Engelmann, F. Geneticallly enginereed trehalose accumulation improves cryopreservation tolerance of chrysanthemum (Dendranthema Grandiflorum Kitam) shoot-tips. Cryoletters 32, 477-486 (2011).
80 Yin, M. & Hong, S. Cryopreservation of Dendrobium candidum Wall. ex Lindl. protocorm-like bodies by encapsulation-vitrification. Plant Cell, Tissue and Organ Culture (PCTOC) 98, 179-185 (2009).
81 Galdiano, R. F., Lemos, E. G., Faria, R. T. & Vendrame, W. A. Cryopreservation of Dendrobium hybrid seeds and protocorms as affected by phloroglucinol and Supercool X1000. Scientia Horticulturae 148, 154-160 (2012).
82 Mikuła, A., Makowski, D., Walters, C. & Rybczyński, J. J. in Working with Ferns: Issues and Applications (eds Ashwani Kumar, Helena Fernández, & Angeles Maria Revilla) 173-192 (Springer New York, 2010).
83 Suranthran, P. et al. Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regul 66, 101-109 (2012).
84 Gantait, S., Sinniah, U. R., Suranthran, P., Palanyandy, S. R. & Subramaniam, S. Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet vitrification approach and assessment of genetic fidelity. Protoplasma 252, 89-101 (2015).
85 Ferrari, E. A. P., Colombo, R. C., Faria, R. T. d. & Takane, R. J. Cryopreservation of seeds of Encholirium spectabile Martius ex Schultes f. by the vitrification method. Revista Ciência Agronômica 47, 172-177 (2016).
86 Nuc, K., Marszałek, M. & Pukacki, P. M. Cryopreservation changes the DNA methylation of embryonic axes of Quercus robur. Trees, 1-11.
87 Niino, T. et al. Cryopreservation of In Vitro. Grown Apical Shoot Tips of Strawberry by Vitrification. Plant Biotechnology 20, 75-80 (2003).
88 Schoenweiss, K., Meier-Dinkel, A. & Grotha, R. Comparison of cryopreservation techniques for long-term storage of ash (Fraxinus excelsior L.). Cryoletters 26, 201-212 (2005).
89 Tanaka, D., Niino, T., Isuzugawa, K., Hikage, T. & Uemura, M. Cryopreservation of shoot apices of in-vitro grown gentian plants: Comparison of vitrification and encapsulation-vitrification protocols. Cryoletters 25, 167-176 (2004).
90 Mikuła, A. Comparison of three techniques for cryopreservation and reestablishment of long-term Gentiana tibetica suspension culture. Cryoletters 27, 269-282 (2006).
91 Otokita, K., Kami, D., Suzuki, T. & Suzuki, M. Cryopreservation of in vitro shoot apices of Glehnia littoralis–a medical plant. Cryoletters 30, 244-250 (2009).
92 Volk, G. & Richards, K. Preservation methods for Jerusalem artichoke cultivars. HortScience 41, 80-83 (2006).
93 Zhou, Q.-N. et al. Cryopreservation and plant regeneration of anther callus in Hevea by vitrification. African Journal of Biotechnology 11, 7212-7217 (2012).
94 Jung, D.-W., Sung, C. K., Touno, K., Yoshimatsu, K. & Shimomura, K. Cryopreservation of Hyoscyamus niger adventitious roots by vitrification. J Plant Physiol 158, 801-805 (2001).
95 Skyba, M. et al. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. Cryoletters 31, 249-260 (2010).
96 Petijová, L., Skyba, M. & Čellárová, E. Genotype-dependent response of St. Johs wort (Hypericum perforatum L.) shoot tips to cryogenic treatment: Effect of pre-culture conditions on post-thaw recovery.
97 Bruňáková, K. & Čellárová, E. Shoot Tip Meristem Cryopreservation of Hypericum Species. Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition, 31-46 (2016).
98 Hirai, D. & Sakai, A. Simplified cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] by optimizing conditions for osmoprotection. Plant Cell Rep 21, 961-966 (2003).
99 Shin, D.-J. et al. Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification. Cryoletters 33, 402-410 (2012).
100 Matsumoto, T., Sakai, A. & Yamada, K. Cryopreservation of in vitro-grown apical meristems of lily by vitrification. Plant Cell, Tissue and Organ Culture 41, 237-241 (1995).
101 Matsumoto, T., Takahashi, C., Sakai, A. & Nako, Y. Cryopreservation of in vitro-grown apical meristems of hybrid statice by three different procedures. Scientia horticulturae 76, 105-114 (1998).
102 Turner, S. et al. Cryopreservation of the australian species Macropidia fuliginosa (Haemodoraceae) by vitrification. Cryo letters 21, 379-388 (1999).
103 Halmagyi, A., Valimareanu, S., Coste, A., Deliu, C. & Isac, V. Cryopreservation of Malus shoot tips and subsequent plant regeneration. Romanian Biotechnological Letters 15, 79-85 (2010).
104 Uchendu, E. E. & Reed, B. M. A comparative study of three cryopreservation protocols for effective storage of in vitro-grown mint (Mentha spp.). Cryoletters 29, 181-188 (2008).
105 Agrawal, A., Swennen, R. & Panis, B. A comparision of four methods for cryopreservation of meristems in banana (Musa Spp.). Cryoletters 25, 101-110 (2004).
106 Galdiano Jr, R. F., de Macedo Lemos, E. G. & Vendrame, W. A. Cryopreservation, early seedling development, and genetic stability of Oncidium flexuosum Sims. Plant Cell, Tissue and Organ Culture (PCTOC) 114, 139-148 (2013).
107 Makowski, D., Tomiczak, K., Rybczyński, J. J. & Mikuła, A. Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiologiae Plantarum 38, 1-12 (2016).
108 Oh, S. Y., Wu, C. H., Popova, E., Hahn, E. J. & Paek, K. Y. Cryopreservation of Panax ginseng adventitious roots. Journal of Plant Biology 52, 348-354 (2009).
109 Uchendu, E., Brown, D. & Saxena, P. Cryopreservation of shoot tips and cotyledons of the North American Ginseng (Panax quinquefolius L.). Cryoletters 32, 463-472 (2011).
110 Garcia, R., Pacheco, G., Vianna, M. & Mansur, E. In vitro conservation of Passiflora suberosa L.: slow growth and cryopreservation. Cryoletters 32, 377-388 (2011).
111 Tokatli, Y. O. & Akdemir, H. Cryopreservation of fraser Photinia (Photinia x fraseri Dress.) via vitrification-based one-step freezing techniques. Cryoletters 31, 40-49 (2010).
112 Touchell, D., Chiang, V. & Tsai, C.-J. Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21, 118-124 (2002).
113 Ružić, D., Vujović, T. & Cerović, R. Cryopreservation of cherry rootstock Gisela 5 (Prunus cerasus× Prunus canescens) shoot tips by droplet-vitrification technique. Journal of Horticultural Research 21, 79-85 (2013).
114 Vujović, T. I., Ružić, Đ. V. & Cerović, R. M. Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification. Biologia 70, 1359-1365 (2015).
115 Kim, H.-H. et al. Cryopreservation of hairy roots of Rubia akane (Nakai) using a droplet-vitrification procedure. Cryoletters 31, 473-484 (2010).
116 Vujović, T., Sylvestre, I., Ružić, D. & Engelmann, F. Droplet-vitrification of apical shoot tips of Rubus fruticosus L. and Prunus cerasifera Ehrh. Scientia Horticulturae 130, 222-228 (2011).
117 Barraco, G., Sylvestre, I. & Engelmann, F. Comparing encapsulation-dehydration and droplet-vitrification for cryopreservation of sugarcane (Saccharum spp.) shoot tips. Scientia Horticulturae 130, 320-324 (2011).
118 Ozudogru, E. et al. Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based techniques. Cryoletters 32, 99-110 (2011).
119 Yi, J. Y. et al. Improvement of the doplet-vitrification method for the cryopreservation of cultivated potato shoot tips. 한국육종학회지 44, 94-99 (2012).
120 Marco-Medina, A., Casas, J. L. & González-Benito, M. E. Comparison of Vitrification and Encapsulationdehydration for Cryopreservation of Thymus Moroderi Shoot Tips. Cryoletters 31, 301-309 (2010).
121 González-Arnao, M. et al. in I International Symposium on Cryopreservation in Horticultural Species 908. 67-72.
122 Gonzalez-Arnao, M. T. et al. Multiplication and cryopreservation of vanilla (Vanilla planifolia ‘Andrews’). In Vitro Cell Dev-Pl 45, 574-582 (2009).
123 Marković, Z., Chatelet, P., Sylvestre, I., Kontić, J. & Engelmann, F. Cryopreservation of grapevine (Vitis vinifera L.) in vitro shoot tips. Open Life Sciences 8, 993-1000 (2013).
124 Matsumoto, T., Sakai, A. & Yamada, K. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13, 442-446 (1994).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *