帳號:guest(3.145.9.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊雅琳
作者(外文):Yang,Ya Lin
論文名稱(中文):結合醣遮蔽與去醣基化策略應用於創新型血凝素流感疫苗之設計
論文名稱(外文):A Combination of Glycan Masking and Glycan Unmasking Strategies as A Novel Influenza Hemagglutinin Vaccine Design
指導教授(中文):吳夙欽
指導教授(外文):Wu, Suh Chin
口試委員(中文):劉家齊
張晃猷
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080517
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:62
中文關鍵詞:流行性感冒醣遮蔽與去醣基化
外文關鍵詞:Influenza ViursGlycan masking/unmasking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
高病原性禽流感H5N1可使人類被感染並對人類的生命造成威脅。血凝素 (hemagglutinin, HA) 是流感病毒上主要的膜蛋白也大量用於疫苗開發。HA是三具體蛋白,由兩個部分組成: HA球狀區域 (globular head) 跟HA軀幹部 (stem region)。在先前的研究已經證實,將HA球狀區域 g127+g138 (dm) 或g83+g127+g138 (tm)的醣遮蔽會誘導廣效性中和抗體去對抗不同亞型的H5N1;另外移除位於HA軀幹部 (stem region) 的醣基,可引發針對同型、異源型和異型病毒產生更高的中和抗體效價。在此篇研究中,我們把HA球狀區域醣遮蔽跟HA軀幹部去醣基化作結合(dm/st2和tm/st2)。利用禽流感H5N1 (A/Thailand/KAN-1/2004) 病毒的HA,用點突變的方式去生產重組H5HA蛋白及H5HA腺病毒載體,並使用不同免疫方式: 2劑重組蛋白和以腺病毒載體prime和重組蛋白boost的方式去免疫小鼠並採取血清做後續分析測試。經本篇研究證實,施打2劑重組蛋白或腺病毒載體prime和重組蛋白boost後,dm/st2 和 tm/st2血清組別對抗不同支系H5N1病毒的中和性抗體可被顯著提升。其中,重組蛋白dm/st2的組別可藉由增加具有軀幹部專一性的抗體來產生廣效性中和抗體對抗不同的異源型H5N1病毒也可以增強抑制病毒融合(anti-fusion)抗體。本篇論文研究結果可為發展廣效型H5N1禽流感病毒疫苗的開發,提供寶貴的資訊。
The Highly pathogenic avian influenza (HPAI) H5N1 viruses cause a serious threat to public health and severe mortality in humans. The hemagglutinin (HA) is a major envelope glycoprotein of influenza virus and also is the target for development influenza vaccines. HA is homo-trimeric complex structure protein, each monomer comprises two components, the globular head domain and stem region. The strategy of glycan-masking the HA globular head domain g127+g138 (dm) and g83+g127+g138 (tm) mutants was previously demonstrated to elicit more potent and broadly neutralizing antibodies against various H5N1 clades/subclades. Unmasking the HA2-stem region N484A (st2) was also discovered to induce more broadly neutralizing antibodies against the homologous and heterosubtypic influenza A viruses. In this study, we developed a new strategy that combines glycan masking and unmasking of hemagglutinin antigens by immunizations with recombinant HA protein, adenovirus vector, and the heterologous prime-boost regimen. Our results indicate that dm/st2 and tm/st2 elicited more neutralizing antibodies titer against heterologous virus of H5N1. Recombinant HA (rHA) dm/st2 induced significantly higher titers of stem-specific antibodies,and enhances H5HA stem-specific anti-fusion antibodies. These findings may provide information for developing more broadly protective HA stem-focused influenza vaccines.
中文摘要 II
Abstract III
致謝 IV
Content V
1. Introduction 1
1.1. Overview of Influenza A viruses 1
1.2. H5N1 avian influenza A viruses 2
1.3. Influenza A virus HA antigen 3
1.3.1. HA structure 3
1.3.2. HA globular head 4
1.3.3. HA Stem region 4
1.4. Influenza HA vaccine design 5
1.5. Glycan masking on the HA globular head for vaccine design 6
1.6. Glycan unmasking on the HA stem region for vaccine design 8
1.7. Study goals 9
2. Materials and Methods 11
2.1. Cell lines 11
2.2. Construction Design of the glycan masking and glycan unmasking recombination H5HA Proteins 11
2.3. Insect-baculovirus expression system for rH5HA proteins 13
2.3.1. Construction of recombinant plasmids 13
2.3.2. Production of recombinant HA proteins 14
2.3.3. Purification of recombinant HA proteins 15
2.3.4. Western blot 15
2.3.5. Commassie blue staining 16
2.3.6. Hemagglutination assay 16
2.4. Preparation of recombinant adenovirus 16
2.4.1. Plaque assay for recombinant adenovirus titration 17
2.4.2. Hemadsorption assay 18
2.5. Mouse Immunizations 18
2.5.1. Enzyme-linked immunosorbent assay (ELISA) 19
2.5.2. Preparation of H5N1 pseudotyped particle (H5pp) 20
2.5.3. H5pp neutralization assay 20
2.5.4. Protein absorption and antibody competition assay 21
2.5.5. Quantitative luciferase-based cell-cell fusion assay 21
2.5.6. Plaque assays and plaque reduction neutralization test (PRNT) 23
2.5.7. Influenza hemagglutination inhibition assay 23
2.6. Statistic analysis 24
3. Results 25
3.1. H5 antigen design by the combination of globular head glycan masking and HA2-stem unmasking strategies 25
3.2. Expression and characterization of soluble rHA -wt, rHA -dm/st2, or rHA -tm/st2 proteins 26
3.3. Binding of rHA proteins to RBS-specific mAbs and stem-specific mAbs 27
3.4. Construction and characterization of adenovirus vector expressing the full-length HA-wt, HA-dm/st2, and HA-tm/st2 27
3.5. Total IgG titers elicited by two-dose rHA immunization or the Ad-HA-prime rHA-boost immunization. 28
3.6. Neutralizing antibodies elicited by two-doses of rH5 protein or the Ad-HA-prime rHA-boost immunization. 29
3.7. Mapping the stem-specific antibodies elicited by two-dose rHA immunization or the Ad-HA-prime rHA-boost immunization. 32
3.8. Anti-fusion activity elicited by two-dose rHA immunization or the Ad-HA-prime rHA-boost immunization. 34
3.9. Hemagglutination inhibition and Neutralizing antibodies elicited by two-dose rHA immunization or the Ad-HA-prime rHA-boost immunization. 35
4. Discussion 37
5. References 41
6. Figures 47
Fig. 1 3D structure model of influenza of H5N1 viruses. 47
Fig. 2 Characterization of recombinant H5HA proteins 48
Fig. 3 Specific antibody binding analysis for rHA proteins 49
Fig. 4 Characterization of recombinant H5HA adenovirus vector. 50
Fig. 5 Total IgG titers elicited by two-doses of rH5 protein or the Ad-HA-prime rHA-boost immunization. 51
Fig. 6 Neutralizing antibodies elicited by two-doses of rHA protein or the Ad-HA-prime rHA-boost immunization. 54
Fig. 7 Neutralizing antibodies elicited by two-doses of rHA protein or the Ad-HA-prime rHA-boost immunization. 56
Fig. 8 Mapping of stem-specific antibodies elicited by two-doses of rHA protein or the Ad-HA-prime rHA-boost immunization. 58
Fig. 9 Competition assay of stem-specific antibodies elicited by two-doses of rHA protein or the Ad-HA-prime rHA-boost immunization 59
Fig. 10 Anti-fusion activity elicited by two-doses of rHA protein or the Ad-HA-prime rHA-boost immunization. 60
Fig. 11 Hemagglutination inhibition and neutralizing antibodies elicited by two-doses of rH5 protein or the Ad-HA-prime rHA-boost immunization. 61
7. Tables 62
Table. 1 Immunization groups by two-doses of rHA protein or the Ad-HA-prime rHA-boost immunization. 62

Abe, Y., Takashita, E., Sugawara, K., Matsuzaki, Y., Muraki, Y., Hongo, S., 2004. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. Journal of virology 78, 9605-9611.
Both, G.W., Sleigh, M.J., Cox, N.J., Kendal, A.P., 1983. Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. Journal of virology 48, 52-60.
Caton, A.J., Brownlee, G.G., Yewdell, J.W., Gerhard, W., 1982. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31, 417-427.
Chen, J.R., Yu, Y.H., Tseng, Y.C., Chiang, W.L., Chiang, M.F., Ko, Y.A., Chiu, Y.K., Ma, H.H., Wu, C.Y., Jan, J.T., Lin, K.I., Ma, C., Wong, C.H., 2014. Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A 111, 2476-2481.
Corti, D., Voss, J., Gamblin, S.J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S.G., Pinna, D., Minola, A., Vanzetta, F., Silacci, C., Fernandez-Rodriguez, B.M., Agatic, G., Bianchi, S., Giacchetto-Sasselli, I., Calder, L., Sallusto, F., Collins, P., Haire, L.F., Temperton, N., Langedijk, J.P., Skehel, J.J., Lanzavecchia, A., 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850-856.
Dreyfus, C., Laursen, N.S., Kwaks, T., Zuijdgeest, D., Khayat, R., Ekiert, D.C., Lee, J.H., Metlagel, Z., Bujny, M.V., Jongeneelen, M., van der Vlugt, R., Lamrani, M., Korse, H.J., Geelen, E., Sahin, O., Sieuwerts, M., Brakenhoff, J.P., Vogels, R., Li, O.T., Poon, L.L., Peiris, M., Koudstaal, W., Ward, A.B., Wilson, I.A., Goudsmit, J., Friesen, R.H., 2012. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343-1348.
Eggink, D., Goff, P.H., Palese, P., 2014. Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyperglycosylation of the globular head domain. Journal of virology 88, 699-704.
Ekiert, D.C., Bhabha, G., Elsliger, M.A., Friesen, R.H., Jongeneelen, M., Throsby, M., Goudsmit, J., Wilson, I.A., 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246-251.
Ekiert, D.C., Friesen, R.H., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W., Ophorst, C., Cox, F., Korse, H.J., Brandenburg, B., Vogels, R., Brakenhoff, J.P., Kompier, R., Koldijk, M.H., Cornelissen, L.A., Poon, L.L., Peiris, M., Koudstaal, W., Wilson, I.A., Goudsmit, J., 2011. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843-850.
Gamblin, S.J., Skehel, J.J., 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285, 28403-28409.
Gerhard, W., Yewdell, J., Frankel, M.E., Webster, R., 1981. Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature 290, 713-717.
Gocnik, M., Fislova, T., Mucha, V., Sladkova, T., Russ, G., Kostolansky, F., Vareckova, E., 2008. Antibodies induced by the HA2 glycopolypeptide of influenza virus haemagglutinin improve recovery from influenza A virus infection. J Gen Virol 89, 958-967.
Gong, X., Yin, H., Shi, Y., He, X., Yu, Y., Guan, S., Kuai, Z., Haji, N.M., Haji, N.M., Kong, W., Shan, Y., 2016. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B. Emerg Microbes Infect 5, e51.
Hai, R., Krammer, F., Tan, G.S., Pica, N., Eggink, D., Maamary, J., Margine, I., Albrecht, R.A., Palese, P., 2012. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. Journal of virology 86, 5774-5781.
Herve, P.L., Lorin, V., Jouvion, G., Da Costa, B., Escriou, N., 2015. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology 486, 134-145.
Hong, M., Lee, P.S., Hoffman, R.M., Zhu, X., Krause, J.C., Laursen, N.S., Yoon, S.I., Song, L., Tussey, L., Crowe, J.E., Jr., Ward, A.B., Wilson, I.A., 2013. Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. Journal of virology 87, 12471-12480.
Iba, Y., Fujii, Y., Ohshima, N., Sumida, T., Kubota-Koketsu, R., Ikeda, M., Wakiyama, M., Shirouzu, M., Okada, J., Okuno, Y., Kurosawa, Y., Yokoyama, S., 2014. Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses. Journal of virology 88, 7130-7144.
Impagliazzo, A., Milder, F., Kuipers, H., Wagner, M.V., Zhu, X., Hoffman, R.M., van Meersbergen, R., Huizingh, J., Wanningen, P., Verspuij, J., de Man, M., Ding, Z., Apetri, A., Kukrer, B., Sneekes-Vriese, E., Tomkiewicz, D., Laursen, N.S., Lee, P.S., Zakrzewska, A., Dekking, L., Tolboom, J., Tettero, L., van Meerten, S., Yu, W., Koudstaal, W., Goudsmit, J., Ward, A.B., Meijberg, W., Wilson, I.A., Radosevic, K., 2015. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349, 1301-1306.
Ivanovic, T., Choi, J.L., Whelan, S.P., van Oijen, A.M., Harrison, S.C., 2013. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. Elife 2, e00333.
Kaverin, N.V., Rudneva, I.A., Ilyushina, N.A., Varich, N.L., Lipatov, A.S., Smirnov, Y.A., Govorkova, E.A., Gitelman, A.K., Lvov, D.K., Webster, R.G., 2002. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83, 2497-2505.
Khanna, M., Sharma, S., Kumar, B., 2014. Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. 2014, 546274.
Krammer, F., Hai, R., Yondola, M., Tan, G.S., Leyva-Grado, V.H., Ryder, A.B., Miller, M.S., Rose, J.K., Palese, P., Garcia-Sastre, A., Albrecht, R.A., 2014. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. Journal of virology 88, 3432-3442.
Krammer, F., Palese, P., 2013. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol 3, 521-530.
Krammer, F., Palese, P., 2015. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14, 167-182.
Laursen, N.S., Wilson, I.A., 2013. Broadly neutralizing antibodies against influenza viruses. Antiviral Res 98, 476-483.
Lin, S.C., Lin, Y.F., Chong, P., Wu, S.C., 2012. Broader neutralizing antibodies against H5N1 viruses using prime-boost immunization of hyperglycosylated hemagglutinin DNA and virus-like particles. PLoS One 7, e39075.
Lin, S.C., Liu, W.C., Jan, J.T., Wu, S.C., 2014. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS One 9, e92822.
Liu, W.C., Jan, J.T., Huang, Y.J., Chen, T.H., Wu, S.C., 2016. Unmasking stem-specific neutralizing epitopes by abolishing N-linked glycosylation sites of influenza hemagglutinin proteins for vaccine design. Journal of virology.
Mahan, A.E., Jennewein, M.F., Suscovich, T., Dionne, K., Tedesco, J., Chung, A.W., Streeck, H., Pau, M., Schuitemaker, H., Francis, D., Fast, P., Laufer, D., Walker, B.D., Baden, L., Barouch, D.H., Alter, G., 2016. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination. PLoS Pathog 12, e1005456.
Marinova-Petkova, A., Feeroz, M.M., Rabiul Alam, S.M., Kamrul Hasan, M., Akhtar, S., Jones-Engel, L., Walker, D., McClenaghan, L., Rubrum, A., Franks, J., Seiler, P., Jeevan, T., McKenzie, P., Krauss, S., Webby, R.J., Webster, R.G., 2014. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh. Emerg Microbes Infect 3, e11.
Medina, R.A., Stertz, S., Manicassamy, B., Zimmermann, P., Sun, X., Albrecht, R.A., Uusi-Kerttula, H., Zagordi, O., Belshe, R.B., Frey, S.E., Tumpey, T.M., Garcia-Sastre, A., 2013. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med 5, 187ra170.
Nachbagauer, R., Wohlbold, T.J., Hirsh, A., Hai, R., Sjursen, H., Palese, P., Cox, R.J., Krammer, F., 2014. Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. Journal of virology 88, 13260-13268.
Okuno, Y., Isegawa, Y., Sasao, F., Ueda, S., 1993. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. Journal of virology 67, 2552-2558.
Pandey, A., Singh, N., Sambhara, S., Mittal, S.K., 2010. Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. Hum Vaccin 6, 178-188.
Rogers, G.N., Paulson, J.C., Daniels, R.S., Skehel, J.J., Wilson, I.A., Wiley, D.C., 1983. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304, 76-78.
Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn, G.M., Hay, A.J., Gamblin, S.J., Skehel, J.J., 2006. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45-49.
Shih, A.C., Hsiao, T.C., Ho, M.S., Li, W.H., 2007. Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. Proc Natl Acad Sci U S A 104, 6283-6288.
Skehel, J.J., Wiley, D.C., 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69, 531-569.
Sriwilaijaroen, N., Suzuki, Y., 2012. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci 88, 226-249.
Steel, J., Lowen, A.C., Wang, T.T., Yondola, M., Gao, Q., Haye, K., Garcia-Sastre, A., Palese, P., 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1.
Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C., Wilson, I.A., 2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404-410.
Su, Y., Yang, H., Zhang, B., Qi, X., Tien, P., 2008. A dual reporter gene based system to quantitate the cell fusion of avian influenza virus H5N1. Biotechnol Lett 30, 73-79.
Sui, J., Hwang, W.C., Perez, S., Wei, G., Aird, D., Chen, L.M., Santelli, E., Stec, B., Cadwell, G., Ali, M., Wan, H., Murakami, A., Yammanuru, A., Han, T., Cox, N.J., Bankston, L.A., Donis, R.O., Liddington, R.C., Marasco, W.A., 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16, 265-273.
Sun, X., Jayaraman, A., Maniprasad, P., Raman, R., Houser, K.V., Pappas, C., Zeng, H., Sasisekharan, R., Katz, J.M., Tumpey, T.M., 2013. N-linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A viruses. Journal of virology 87, 8756-8766.
Tate, M.D., Job, E.R., Deng, Y.M., Gunalan, V., Maurer-Stroh, S., Reading, P.C., 2014. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6, 1294-1316.
Velkov, T., Ong, C., Baker, M.A., Kim, H., Li, J., Nation, R.L., Huang, J.X., Cooper, M.A., Rockman, S., 2013. The antigenic architecture of the hemagglutinin of influenza H5N1 viruses. Mol Immunol 56, 705-719.
Viswanathan, K., Chandrasekaran, A., Srinivasan, A., Raman, R., Sasisekharan, V., Sasisekharan, R., 2010. Glycans as receptors for influenza pathogenesis. Glycoconj J 27, 561-570.
Wang, C.C., Chen, J.R., Tseng, Y.C., Hsu, C.H., Hung, Y.F., Chen, S.W., Chen, C.M., Khoo, K.H., Cheng, T.J., Cheng, Y.S.E., Jan, J.T., Wu, C.Y., Ma, C., Wong, C.H., 2009. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proceedings of the National Academy of Sciences of the United States of America 106, 18137-18142.
Wang, G., Zhou, F., Buchy, P., Zuo, T., Hu, H., Liu, J., Song, Y., Ding, H., Tsai, C., Chen, Z., Zhang, L., Deubel, V., Zhou, P., 2014. DNA prime and virus-like particle boost from a single H5N1 strain elicits broadly neutralizing antibody responses against head region of H5 hemagglutinin. J Infect Dis 209, 676-685.
Watanabe, Y., Ibrahim, M.S., Suzuki, Y., Ikuta, K., 2012. The changing nature of avian influenza A virus (H5N1). Trends Microbiol 20, 11-20.
Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y., 1992. Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-179.
Webster, R.G., Peiris, M., Chen, H., Guan, Y., 2006. H5N1 outbreaks and enzootic influenza. Emerg Infect Dis 12, 3-8.
Wei, C.J., Boyington, J.C., McTamney, P.M., Kong, W.P., Pearce, M.B., Xu, L., Andersen, H., Rao, S., Tumpey, T.M., Yang, Z.Y., Nabel, G.J., 2010. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060-1064.
Wiley, D.C., Wilson, I.A., Skehel, J.J., 1981. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289, 373-378.
Wohlbold, T.J., Krammer, F., 2014. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses 6, 2465-2494.
Xu, R., Wilson, I.A., 2011. Structural characterization of an early fusion intermediate of influenza virus hemagglutinin. Journal of virology 85, 5172-5182.
Yang, J., Li, M., Shen, X., Liu, S., 2013. Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses 5, 352-373.
Yassine, H.M., Boyington, J.C., McTamney, P.M., Wei, C.J., Kanekiyo, M., 2015. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. 21, 1065-1070.
Zhang, X., Chen, S., Yang, D., Wang, X., Zhu, J., Peng, D., Liu, X., 2015. Role of stem glycans attached to haemagglutinin in the biological characteristics of H5N1 avian influenza virus. J Gen Virol 96, 1248-1257.
Zhou, F., Wang, G., Buchy, P., Cai, Z., Chen, H., Chen, Z., Cheng, G., Wan, X.F., Deubel, V., Zhou, P., 2012. A triclade DNA vaccine designed on the basis of a comprehensive serologic study elicits neutralizing antibody responses against all clades and subclades of highly pathogenic avian influenza H5N1 viruses. Journal of virology 86, 6970-6978.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
2. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
3. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
4. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
5. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
6. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
7. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
8. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
9. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
10. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
11. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
12. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
13. 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
14. 表達呼吸道融合病毒融合蛋白及其特性分析
15. 以DNA-prime和似病毒顆粒-booster方法來研發免疫聚焦性H5HA流感疫苗
 
* *