帳號:guest(18.224.53.19)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張煒
作者(外文):Zhang Wei
論文名稱(中文):在果蠅AD模型上觀察澱粉樣蛋白的堆積及其細胞毒性
論文名稱(外文):in vivo observation of Aβ accumulation and its cytotoxicity in drosophila brain
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui Yun
口試委員(中文):桑自剛
汪宏達
口試委員(外文):Sang, Tzu Gang
Wang, Horng Dar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:103080466
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:29
中文關鍵詞:阿茲海默癥澱粉樣蛋白細胞毒性
外文關鍵詞:Alzheimer Diseaseamyloid betacytotoxicity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
阿茲海默症(AD)作為一種慢性神經退化性疾病,是目前造成老年癡呆的最主要病因之一。大量研究表明,Amyloid beta (Aβ)在其致病機轉中扮演了重要的角色。一些研究認為,Aβ的細胞毒性主要是由其多聚物造成的,但仍然無法確定是細胞外的還是細胞內的堆積才是造成毒性的最主要原因。Aβ會破壞AD病人腦中神經元的興奮﹣抑制平衡,加劇病變的發生。一些早期症狀通常和glutamatergic 神經元的功能異常同期發生,這些異常或許與 Aβ產生和沉積有關。GABA則是神经系统中重要的抑制性神经传导物质,对神经元的活性以及功能有重要作用。因此, 本篇研究利用果蠅為實驗材料,結合GAL4/UAS系統,將Aβ表現在glutamatergic和GABAergic神經元上以觀察其細胞毒性。通過改良的方法,我們利用6E10抗體成功在果蠅大腦內觀察到Aβ堆積的存在。Aβ表現於果蠅的glutamate neurons 或GABAergic neurons中時,我們觀察到在果蠅觸角葉外圍形成大量的堆積,并造成周圍神經元的減少。這一現象在glutamatergic和GABAergic 神經元中均有發生,結合近期研究的結果,我們推論Aβ通過形成大量的細胞外堆積對果蠅嗅覺的兩套平行抑制系統均會造成神經退化的影響,並且在GABAergic神經元上的影響要大於及較早與glutamatergic神經元。總的來說,本研究以直接證據證明了Aβ在果蠅腦中的存在,為將來更進一步研究其在AD發病機制中的作用提供更為有利的支持。
Alzheimer’s disease (AD) is the well-known and leading cause of dementia. Amyloid beta (Aβ), one of AD’s early onset pathological hallmarks, has been studied in many different aspects including in vitro and in vivo researches. Some of those studies revealed that the oligomer form rather than the fibrils of Aβ is the major cause of its cytotoxicity. We know little about how two kinds of deposition formed during aging: intracellular and extracellular depositions. Which is the major deposition leading to neuron dysfunction? Aβ can destroy the balance between neuron excitatory and inhibitory. Glutamatergic neuron is the classic excitatory neurons whose excitotoxicity usually come up with Aβ deposits and gamma-aminobutyric acid (GABA) is the classic inhibitory neurotransmitter, both are necessary for learning and memory. Here, we used the model organism Drosophila with the adequately established GAL4-UAS system to express Aβ in glutamatergic and GABAergic neurons to explore its toxic effects. By using general Aβ antibody, we identified the existence and deposits of Aβ, which have not been done in early studies. We found the neuron loss induced by Aβ and these Aβ deposits emerged at a very early stage. Deposits are earlier and largely found in/or around the antennal lobe, indicating that olfactory system, the major part for Drosophila to sense and establish memory is the most affected which is full of glutamatergic and GABAergic neurons. Together, this study provided a great, direct evidence of Aβ plague-like deposition existence in Drosophila AD model, which can be useful for better utilization of this powerful model organism.
Abstract I
摘要 II
Introduction 1
Alzheimer’s disease 1
Amyloid hypothesis 2
Glutamatergic neurons and AD 3
GABAergic neurons and AD 4
Drosophila model 5
Materials and Methods 7
Drosophila genetics and stocks 7
Immunohistochemistry and confocal images 7
Results 8
GAL4 lines expression pattern confirmed by GFP labeling 8
Aβ deposited in glutamatergic and GABAergic neuron 9
Aβ is intracellular in dopaminergic neuron but mostly extracellular in glutamatergic and GABAergic neuron 10
Aβ induced glutamatergic and GABAergic neuron loss 11
Characterization of Aβ distribution pattern in glutamatergic and GABAergic neurons 12
Discussion 13
Identification of Aβ in Drosophila 13
Drosophila antennal lobe to its olfactory memory may affect by Aβ 13
Intracellular VS extracellular 14
FIGURES 16
Figure 1. Expression patterns of glutamatergic and GABAergic neurons in Drosophila 16
Figure 2. Aβ expression in glutamatergic and GABAergic neurons 17
Figure 3. Intracellular and extracellular Aβ in different neuron types 18
Figure 4. Neuron loss induced by Aβ. 19
Figure 5. Characterization of Aβ deposition in Drosophila glutamatergic and GABAergic neurons. 21
Figure 6. Intracellular Aβ and extracellular Aβ analysis. 22
References 23
Aksenov, M., Aksenova, M., Harris, M., Hensley, K., Butterfield, D., & Carney, J. (2002). Enhancement of β-Amyloid Peptide Aβ(1-40)-Mediated Neurotoxicity by Glutamine Synthetase. Journal Of Neurochemistry, 65(4), 1899-1902.
Albers, M., Tabert, M., & Devanand, D. (2006). Olfactory dysfunction as a predictor of neurodegenerative disease. Current Neurology And Neuroscience Reports, 6(5), 379-386.
Arias, C., Arrieta, I., & Tapia, R. (1995). Beta-Amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J. Neurosci. Res., 41(4), 561-566.
Beach, T., Monsell, S., Phillips, L., & Kukull, W. (2012). Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol, 71(4), 266-273.
Bell, K., Bennett, D., & Cuello, A. (2007). Paradoxical Upregulation of Glutamatergic Presynaptic Boutons during Mild Cognitive Impairment. Journal Of Neuroscience, 27(40), 10810-10817.
Benilova, I., Karran, E., & De Strooper, B. (2012). The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nature Neuroscience, 15(3), 349-357.
Burnouf, S., Gorsky, M., Dols, J., Grönke, S., & Partridge, L. (2015). Aβ43 is neurotoxic and primes aggregation of Aβ40 in vivo. Acta Neuropathologica, 130(1), 35-47.
Burns, A. & Iliffe, S. (2009). Alzheimer's disease. BMJ, 338(feb05 1), b158-b158.
Burns, A., Jacoby, R., & Levy, R. (1990). Psychiatric phenomena in Alzheimer's disease. I: Disorders of thought content. The British Journal Of Psychiatry, 157(1), 72-76.
Busche, M., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K., & Haass, C. et al. (2008). Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease.Science, 321(5896), 1686-1689.
Cacabelos, R., Takeda, M., & Winblad, B. (1999). The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int. J. Geriat. Psychiatry, 14(1), 3-47.
Campos-Pea, V. & Antonio, M. (2014). Alzheimer Disease: The Role of Aβ in the Glutamatergic System. Neurochemistry.
Chengxuan Qiu, E. (2009). Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues In Clinical Neuroscience, 11(2), 111.
Chou, Y., Spletter, M., Yaksi, E., Leong, J., Wilson, R., & Luo, L. (2010). Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience,13(4), 439-449.
Daniels, R., Gelfand, M., Collins, C., & DiAntonio, A. (2008). Visualizing glutamatergic cell bodies and synapses inDrosophila larval and adult CNS. The Journal Of Comparative Neurology, 508(1), 131-152.
Danysz, W. & Parsons, C. (2012). Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine - searching for the connections. British Journal Of Pharmacology, 167(2), 324-352.
Das, A., Chiang, A., Davla, S., Priya, R., Reichert, H., VijayRaghavan, K., & Rodrigues, V. (2011). Identification and analysis of a glutamatergic local interneuron lineage in the adult Drosophila olfactory system. Neural Systems & Circuits, 1(1), 4.
Das, A., Gupta, T., Davla, S., Prieto-Godino, L., Diegelmann, S., & Reddy, O. et al. (2013). Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system. Developmental Biology, 373(2), 322-337.
Das, A., Sen, S., Lichtneckert, R., Okada, R., Ito, K., Rodrigues, V., & Reichert, H. (2008). Drosophila olfactory local interneurons and projection neurons derive from a common neuroblast lineage specified by the empty spiracles gene. Neural Dev, 3(1), 33.
Eisele, Y., Obermuller, U., Heilbronner, G., Baumann, F., Kaeser, S., & Wolburg, H. et al. (2010). Peripherally Applied Abeta-Containing Inoculates Induce Cerebral  beta-Amyloidosis. Science,330(6006), 980-982.
Esposito, Z., Belli, L., Toniolo, S., Sancesario, G., Bianconi, C., & Martorana, A. (2013). Amyloid β, Glutamate, Excitotoxicity in Alzheimer's Disease: Are We on the Right Track?. CNS Neuroscience & Therapeutics, 19(8), 549-555.
Finelli, A., Kelkar, A., Song, H., Yang, H., & Konsolaki, M. (2004). A model for studying Alzheimer's Aβ42-induced toxicity in Drosophila melanogaster. Molecular And Cellular Neuroscience, 26(3), 365-375.
Francis, P. (2003). Glutamatergic systems in Alzheimer's disease. Int. J. Geriat. Psychiatry, 18(S1), S15-S21.
Friedrich, R., Tepper, K., Ronicke, R., Soom, M., Westermann, M., & Reymann, K. et al. (2010). Mechanism of amyloid plaque formation suggests an intracellular basis of A  pathogenicity.Proceedings Of The National Academy Of Sciences, 107(5), 1942-1947.
Garcia-Alloza, M., Tsang, S., Gil-Bea, F., Francis, P., Lai, M., & Marcos, B. et al. (2006). Involvement of the GABAergic system in depressive symptoms of Alzheimer's disease. Neurobiology Of Aging,27(8), 1110-1117.
Glenner, G. & Wong, C. (1984). Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical And Biophysical Research Communications, 120(3), 885-890.
Gouras, G., Tsai, J., Naslund, J., Vincent, B., Edgar, M., & Checler, F. et al. (2000). Intraneuronal Aβ42 Accumulation in Human Brain. The American Journal Of Pathology, 156(1), 15-20.
Guttmacher, A., Collins, F., Nussbaum, R., & Ellis, C. (2003). Alzheimer's Disease and Parkinson's Disease. New England Journal Of Medicine, 348(14), 1356-1364.
Gyure, K., Durham, R., Stewart, W., Smialek, J., & Troncoso, J. (2001). Intraneuronal Aβ-amyloid precedes development of amyloid plaques in Down syndrome. Archives Of Pathology And Laboratory Medicine, 125(4).
H. Funato, Y. (1998). Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer's disease. The American Journal Of Pathology, 152(6), 1633.
Hanns Hippius, G. (2003). The discovery of Alzheimer's disease. Dialogues In Clinical Neuroscience,5(1), 101.
Hebert, L., Scherr, P., Bienias, J., Bennett, D., & Evans, D. (2003). Alzheimer Disease in the US Population. Arch Neurol, 60(8), 1119.
Hickman, S., Allison, E., & El Khoury, J. (2008). Microglial Dysfunction and Defective  -Amyloid Clearance Pathways in Aging Alzheimer's Disease Mice. Journal Of Neuroscience, 28(33), 8354-8360.
Hiltunen, M., van Groen, T., & Jolkkonen, J. (2009). Functional Roles of Amyloid-β Protein Precursor and Amyloid-β Peptides: Evidence from Experimental Studies. Journal Of Alzheimer's Disease,18(2), 401-412.
Hynd, M. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease.Neurochemistry International, 45(5), 583-595.
Iijima, K., Liu, H., Chiang, A., Hearn, S., Konsolaki, M., & Zhong, Y. (2004). Dissecting the pathological effects of human Aβ40 and Aβ42 in drosophila: a potential model for Alzheimer's disease. Neurobiology Of Aging, 25, S17.
Jefferis, G. & Hummel, T. (2006). Wiring specificity in the olfactory system. Seminars In Cell & Developmental Biology, 17(1), 50-65.
Jefferis, G., Marin, E., Stocker, R., & Luo, L. (2001). Target neuron prespecification in the olfactory map of Drosophila. Nature, 414(6860), 204-208.
Jia, S., Lu, Z., Gao, Z., An, J., Wu, X., & Li, X. et al. (2016). Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1–42-induced rat model of Alzheimer's disease. International Journal Of Biological Macromolecules, 83, 416-425.
Jo, S., Yarishkin, O., Hwang, Y., Chun, Y., Park, M., & Woo, D. et al. (2014). GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nature Medicine, 20(8), 886-896.
Kawas, C. (2003). Early Alzheimer's Disease. New England Journal Of Medicine, 349(11), 1056-1063.
Kienlen-Campard, P. (2002). Intracellular Amyloid-beta 1-42, but Not Extracellular Soluble Amyloid-beta Peptides, Induces Neuronal Apoptosis. Journal Of Biological Chemistry, 277(18), 15666-15670.
Kirvell, S., Esiri, M., & Francis, P. (2006). Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer's disease. Journal Of Neurochemistry, 98(3), 939-950.
LaFerla, F., Green, K., & Oddo, S. (2007). Intracellular amyloid-β in Alzheimer's disease. Nature Reviews Neuroscience, 8(7), 499-509.
Lai, S., Awasaki, T., Ito, K., & Lee, T. (2008). Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development, 135(17), 2883-2893.
Lei, M., Xu, H., Li, Z., Wang, Z., O'Malley, T., & Zhang, D. et al. (2016). Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiology Of Disease, 85, 111-121.
Lim, J., Ott, S., & Crowther, D. (2016). Drosophila melanogaster as a Model for Studies on the Early Stages of Alzheimer’s Disease. Systems Biology Of Alzheimer's Disease, 227-239.
Liu, W. & Wilson, R. (2013). Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proceedings Of The National Academy Of Sciences, 110(25), 10294-10299.
Ma, K. & McLaurin, J. (2014). α-Melanocyte Stimulating Hormone Prevents GABAergic Neuronal Loss and Improves Cognitive Function in Alzheimer's Disease. Journal Of Neuroscience, 34(20), 6736-6745.
Murphy, C. (1999). Loss of Olfactory Function in Dementing Disease. Physiology & Behavior, 66(2), 177-182.
Nagel, K. & Wilson, R. (2016). Mechanisms Underlying Population Response Dynamics in Inhibitory Interneurons of the Drosophila Antennal Lobe. Journal Of Neuroscience, 36(15), 4325-4338.
Ng, M., Roorda, R., Lima, S., Zemelman, B., Morcillo, P., & Miesenböck, G. (2002). Transmission of Olfactory Information between Three Populations of Neurons in the Antennal Lobe of the Fly.Neuron, 36(3), 463-474.
Nicola-Antoniu, I. (2011). Olfactory Dysfunctions in Alzheimer’s Disease. The Clinical Spectrum Of Alzheimer's Disease -The Charge Toward Comprehensive Diagnostic And Therapeutic Strategies.
O'Brien, R. & Wong, P. (2011). Amyloid Precursor Protein Processing and Alzheimer's Disease. Annu. Rev. Neurosci., 34(1), 185-204.
Ott, S., Vishnivetskaya, A., Malmendal, A., & Crowther, D. (2016). Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity. Neurobiology Of Aging, 41, 39-52.
Oyama, R., Yamamoto, H., & Titani, K. (2000). Glutamine synthetase, hemoglobin α-chain, and macrophage migration inhibitory factor binding to amyloid β-protein: their identification in rat brain by a novel affinity chromatography and in Alzheimer’s disease brain by immunoprecipitation. Biochimica Et Biophysica Acta (BBA) - Protein Structure And Molecular Enzymology, 1479(1-2), 91-102.
Pandey, U. & Nichols, C. (2011). Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacological Reviews, 63(2), 411-436.
Rezek, D. (1987). Olfactory Deficits as a Neurologic Sign in Dementia of the Alzheimer Type. Archives Of Neurology, 44(10), 1030-1032.
Rogers, I., Kerr, F., Martinez, P., Hardy, J., Lovestone, S., & Partridge, L. (2012). Aging Increases Vulnerability to Aβ42 Toxicity in Drosophila. Plos ONE, 7(7), e40569.
Sadigh-Eteghad, S., Sabermarouf, B., Majdi, A., Talebi, M., Farhoudi, M., & Mahmoudi, J. (2015). Amyloid-Beta: A Crucial Factor in Alzheimer's Disease. Med Princ Pract, 24(1), 1-10.
Sherif, F. (1994). GABA-Transaminase in brain and blood platelets: Basic and clinical aspects. Progress In Neuro-Psychopharmacology And Biological Psychiatry, 18(8), 1219-1233.
Solas, M., Puerta, E., & Ramirez, M. (2015). Treatment Options in Alzheimer´s Disease: The GABA Story. CPD, 21(34), 4960-4971.
Spletter, M., Liu, J., Liu, J., Su, H., Giniger, E., & Komiyama, T. et al. (2007). Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. Neural Dev, 2(1), 14.
Sun, X., Meng, X., Zhang, J., Li, Y., Wang, L., & Qin, X. et al. (2012). GABA Attenuates Amyloid Toxicity by Downregulating its Endocytosis and Improves Cognitive Impairment. Journal Of Alzheimer's Disease: JAD, 31(3), 635-49.
Varoqui, H., Schäfer, M., Zhu, H., Weihe, E., & Erickson, J. (2002). Identification of the Differentiation-Associated Na+/PI Transporter as a Novel Vesicular Glutamate Transporter Expressed in a Distinct Set of Glutamatergic Synapses. The Journal Of Neuroscience, 22(1), 142-155. Retrieved from
Wenk, G., Parsons, C., & Danysz, W. (2006). Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behavioural Pharmacology, 17(5-6), 411-424.
Wesson, D., Levy, E., Nixon, R., & Wilson, D. (2010). Olfactory Dysfunction Correlates with Amyloid-  Burden in an Alzheimer's Disease Mouse Model. Journal Of Neuroscience, 30(2), 505-514.
World Alzheimer Report 2015. (2016). Worldalzreport2015.org. Retrieved from http://www.worldalzreport2015.org/
Wu, T., Lu, Y., Chuang, C., Wu, C., Chiang, A., Krantz, D., & Chang, H. (2013). Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathologica, 125(5), 711-725.
Yoshiike, Y., Kimura, T., Yamashita, S., Furudate, H., Mizoroki, T., Murayama, M., & Takashima, A. (2008). GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin. Plos ONE, 3(8), e3029.
Zhang, L., Yu, H., Song, C., Lin, X., Chen, B., & Tan, C. et al. (2009). Expression, purification, and characterization of recombinant human β-amyloid42 peptide in Escherichia coli. Protein Expression And Purification, 64(1), 55-62.
ZUCCO, G. & NEGRIN, N. (1994). OLFACTORY DEFICITS IN DOWN SUBJECTS: A LINK WITH ALZHEIMER DISEASE. Perceptual And Motor Skills, 78(2), 627-631.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *