帳號:guest(3.144.48.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王敍親
作者(外文):Wang, Hsu Chin
論文名稱(中文):應用債權移轉的虛擬貨幣系統之社群關係研究
論文名稱(外文):A community – based virtual money system using debt transfer
指導教授(中文):王俊程
指導教授(外文):Wang, Jyun Cheng
口試委員(中文):王貞雅
江成欣
口試委員(外文):Wang, Chen Ya
Chiang, Cheng Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:服務科學研究所
學號:103078502
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:53
中文關鍵詞:金融科技社群借貸虛擬貨幣誠實商店債權轉移
外文關鍵詞:FintechSocial lendingVirtual currencyHonesty storeDebt transfer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:175
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
摘要
此篇研究旨在以虛擬貨幣系統來探討社群成員及社群間的小數目借貸關係。隨著科技發展,金融服務產業產生劇烈變化,不只交易成本大幅下降,金融服務公司亦如雨後春筍般林立。在台灣,P2P借貸平台是很熱門的議題,然而借貸關係和個人信用兩者密不可分,不只傳統銀行、新崛起的P2P借貸平台也致力於瞭解一個人的信用程度,但對於剛出社會的新鮮人,信用很難以傳統的資料,如收入、歷史交易訊息等估算。然而,在這通訊軟體發達的時代,倘若能有效觀察利用社群間的借貸關係,這將能是非常有價值的資料,因此,許多公司紛紛著手研究。此篇研究嘗試著利用債權轉移的概念設計虛擬貨幣系統,並讓使用者用虛擬幣來償還對外的欠款,此外,為了創造更多使用情境,我們建立實驗性的誠實商店,使用者可以利用虛擬幣付款,也能透過特定工作賺取虛擬幣。藉由系統搜集的使用者交易資料,以及情境類似的運動團成員交易資料中,我們利用社會網絡分析並綜合臉書資料來觀察他們彼此的借貸關係,我們發現人與人之間的交易情形很難以臉書的互動作為推估,交易量頻繁的人會有較強烈的需求使用系統記錄彼此的借貸關係,但這些人卻不一定會在臉書上有頻繁互動,然而將兩者資料結合後,似乎就能推估他們的親近關係及在團體中的信用程度。另外,透過虛擬幣的抵銷及轉移,這些頻繁的借貸關係中的清帳次數大幅下降,虛擬幣亦成功的將不同的社群連結起來。此研究提供了社群間借貸關係模型的開端,同時分析了社群借貸關係效用,也測試了使用者對虛擬貨幣的接受度,並提供相關經驗,給予對相關領域有興趣的研究員一個方向,此外,更也能作為借貸公司評估信用的參考。
Abstract
This research applies virtual currency system to explore the credit-debt relationships among communities and its members. As technology advanced in the field of finance, it not only causes reduction in transaction cost, but pushes forward the technology companies to provide innovative financial service. In Taiwan, P2P lending is a popular topic. When it comes to the credit-debt relationships, personal credit is the most important aspect for traditional banks and P2P lending companies are aimed at figuring it out. However, for a fresh graduate, it is hard to estimate his credit level with traditional attributes such as salary and lending history. But in this internet era, the credit-debt relationships in communities are valuable data for reckoning personal credit, hence many companies put their hand to do related researches. In this research, we design a virtual money system using debt transferring in which users pay with virtual money. We also establish an experimental honesty store to create more usage scenes for them to spend and earn virtual money. Then we apply the social network analysis on the data we collect from our system and an exercise group to compare their transaction relations with interaction on Facebook. We find those who have frequent transactions tend to keep credit-debt records on our system, but their interaction on Facebook does not show certain correspondence. Nevertheless, we can assess their closeness and credit in a community by combining our collected data and FB attributes. Besides, the number of settlement of these complicated credit-debt relationships will be cut down by transferring and offsetting the virtual money. The virtual money also plays a key role to concatenate several different communities. The result of this research creates the opening of credit-debt relationship among communities, indicates its utility, evaluates the acceptance of virtual money, and provides related experience to researchers with interests. On the other hand, it is an available reference for lending companies to appraise one’s credit.
Chapter 1 Introduction 1
1.1 Payment Methods 1
1.2 Peer-to-peer lending 2
1.3 Research purposes and contributions 2
Chapter 2 Theoretical foundation 4
2.1 Examples for Community Currency 4
2.1.1 Key factors for success in CCs system 6
2.2 Examples for Virtual Currency 7
2.2.1 Key insight for VCs system 9
2.3 Summary for this chapter 9
Chapter 3 Proposed model and mechanisms 10
3.1 Incumbent application for social payment 10
3.2 Lending relationship model between friends 12
3.3 Our proposed system – Social Money 15
3.4 Experiment – the honesty store 18
3.4.1 Mechanisms to run the honesty store 18
3.4.2 Virtual currency system 19
Chapter 4 Analysis and finding 21
4.1 Data 21
4.2 Analysis 22
4.2.1 Credit-debt records among friends 23
4.2.2 Transaction data of honesty store 30
4.2.3 Exercising group 34
4.3 Users’ feedbacks 37
Chapter 5 Discussion 40
5.1 Discussion 40
5.1.1 The number of settlements will be cut down and the connection among several communities are established through Social Money. 40
5.1.2 The transaction frequency is hard to be appraised by interaction degrees in Facebook. 42
5.1.3 The virtual money can encourage participants to operate the honesty store. 43
5.2 Contributions & Conclusion 44
5.3 Limitations 47
5.4 Future work 48
References 51
Appendix 53
A. The questions of interview 53
Alghamdi, S., & Beloff, N. (2015). Virtual currency concept: its implementation, impacts and legislation. Science and Information Conference (p. 9). London: Science and Information Conference.
Bjerg, O. (2015). How is Bitcoin Money? Theory, Culture & Society, 33(1), 53-72.
Brett, K. (2012). Bank 3.0 - Why banking is no longer somewhere you go, but something you do. USA: Marshall Cavendish International.
Deloitte. (2015). The future of financial services. U.S.: Deloitte.
Edward, C. (2014). Wildcat Currency: How the virtual money revolution is transforming the economy. U.S: Yale University Press.
Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. 27th Annual CHI Conference on Human Factors in Computing Systems, Boston, MA, USA. 211–220.
Granovetter, M. (1983). The Strength of Weak Ties: A Network Theory Revisited. Sociological Theory, 1, 201.
Kichiji, N., & Nishibe, M. (2008). Network Analyses of the Circulation Flow of Community Currency. Evolutionary and Institutional Economics Review, 4(2), 267-300.
Luther, W. J. (2016). Bitcoin and the future of digital payments. The Independent Review, 397-404.
Madeira, M., & Joshi, A. (2013, 8-14 Sept. 2013). Analyzing Close Friend Interactions in Social Media. Paper presented at the Social Computing (SocialCom), 2013 International Conference on.
Mihaylov, M., Jurado, S., Avellana, N., Moffaert, K. V., Abril, I. M. d., Now, A., & x00E. (2014). NRGcoin: virtual currency for trading of renewable energy in smart grids. 11th International Conference on the European Energy Market (EEM14) (p. 6). Krakow: IEEE.

Oliver Sanz, E. (2016). Community currency (CCs) in Spain: An empirical study of their social effects. Ecological Economics, 121, 20-27.
Ovčjak, B., Heričko, M., & Polančič, G. (2015). Factors impacting the acceptance of mobile data services – A systematic literature review. Computers in Human Behavior, 53, 24-47.
Rozzani, N., Rahman, R. A., Mohamed, I. S., & Yusuf, S. N. S. (2015). Development of Community Currency for Islamic Microfinance. Procedia Economics and Finance, 31, 803-812.
Serrano-Cinca, C., Gutierrez-Nieto, B., & Lopez-Palacios, L. (2015). Determinants of default in P2P Lending. PLOS ONE, 22.
Shim, Y., & Shin, D.-H. (2016). Analyzing China’s Fintech Industry from the Perspective of Actor–Network Theory. Telecommunications Policy, 40(2-3), 168-181.
Shin, D. H. (2008). Understanding purchasing behaviors in a virtual economy: Consumer behavior involving virtual currency in Web 2.0 communities. Interacting with Computers, 20(4-5), 433-446.
Trevor I. , K. (2015). Beyond bitcoin: issues in regulating blockchain transactions. Duke Law Journal, 569-608.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *