帳號:guest(3.138.117.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏宏
作者(外文):Chen,Po Hung
論文名稱(中文):濕式氧化法形成Al2O3鈍化層之背面具局部接觸結構矽晶太陽能電池研究
論文名稱(外文):Forming Al2O3 Passivation Layer by Wet Oxidation Method in the Study of Multicrystalline Silicon Solar Cell with Rear Local Contact
指導教授(中文):王立康
指導教授(外文):Wang,Li Karn
口試委員(中文):張正陽
陳昇暉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066543
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:84
中文關鍵詞:濕式氧化太陽能電池
外文關鍵詞:PERC solar cellwet oxidation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:318
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗分為三個部份,第一部分以ALD沉積10nm厚的氧化鋁薄膜,改變退火條件,找出使氧化鋁薄膜的少數載子生命期提升效果最佳的快速熱退火參數。
第二部份探討濕式氧化形成的氧化鋁薄膜,先以E-Gun在表面鍍上5~10nm厚的金屬鋁,再浸泡過氧化氫及過錳酸鉀使其氧化形成鈍化層,嚐試改變不同的氧化時間,並觀察其退火後的少數載子生命其提升倍率,接著透過XPS及TEM觀察氧化鋁膜的縱深分析及其實際厚度;並且我們也觀察氧化鋁膜退火後閒置於大氣環境中的liftime衰減及再退火後的lifetime。
第三部分則為元件製作的部分,首先量測100nm氮化矽反射層的抗反射效果,接著用SEM觀察背部電擊的局部接觸及BSF的厚度量測,最後量測I-V曲線填充因子達到75.7%,轉換效率為16.72%。
There are three parts in this study: First, we optimized the annealing parameter which led to the best performance in terms of minority carrier lifetime of the wafer which was deposited with a 10nm Al2O3 thin film on the rear surface by ALD.
The characteristics of an Al2O3 thin film formed by wet oxidation will be analyzed in part two. We deposited an about 7 nm thick aluminum film on the rear surface of a phosphorus diffused multi-crystalline silicon wafer by an E-gun evaporator. After that, the wafers were dipped into solutions of H2O2 and KMnO4, respectively, in order to form an Al2O3 passivation layer. At different oxidation time, we observed the improvement of the minority carrier lifetime after annealing under the best condition that we found at part one. The concentration distribution and the thickness of Al2O3 thin film are measured by XPS and TEM measurements, respectively. Furthermore, we observed not only the lifetime decay of those wafers which were placed in the atmospheric environment but also the minority carrier lifetime upon re-annealing.
In part three, we measured the reflectance of a 100-nm SiNx anti-reflection coating layer on the front side. Then, SEM measurements showed the rear local contacts and the thickness of the local BSF followed by I-V measurements of solar cell conversion efficiency. The conversion efficiency of the solar cell under study reached 16.72% in comparison with 15.89% for a reference cell.
第一章 序論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究目的 7
1-4 論文架構 8
第二章 實驗原理 9
2-1 基礎半導體物理 9
2-1-1 半導體材料 9
2-1-2 晶體結構 10
2-1-3 半導體能帶與光吸收 12
2-1-4 半導體參雜 15
2-1-5 P-N接面 17
2-2 太陽能電池 21
2-2-1 太陽光譜 21
2-2-2 太陽能電池的工作原理 23
2-2-3 太陽能電池等效電路 24
2-2-4 太陽能電池電性參數 27
2-2-5 效率損失及改善方法 30
2-2-6 背表面場(Back Surface Field,BSF) 32
2-2-7 氧化鋁的場鈍化效應 33
2-3 濕式氧化原理 34
2-3-1 氧化還原反應 34
2-3-2 氧化還原電位 35
2-3-3 濕式氧化 35
第三章 研究方法與製程步驟 37
3-1 前置步驟 37
3-2 元件製作流程 39
3-3 量測方法 46
第四章 實驗數據與分析 49
4-1 三氧化二鋁鈍化層討論 49
4-1-1 ALD氧化鋁膜少數載子生命期 49
4-1-2 濕式氧化法的少數載子生命週期討論 52
4-1-3 濕式氧化鋁薄膜的XPS量測 58
4-1-4 過氧化氫氧化鋁膜的TEM量測 63
4-1-5 C-V量測 65
4-1-6 少數載子生命期的衰退 69
4-2 太陽能電池元件 70
4-2-1 元件的反射率量測 70
4-2-2 SEM量測 72
4-2-3 I-V量測及效率 74
第五章 結論 77
參考文獻 79

[1] D. Kanama and H. Kawamoto, “Research and Development Trends of Solar
Cell for Highly Efficiency,” Science & Technology Trends Quarterly Review, 28,
pp.37-74, 2008.
[2]李季達, “太陽電池產業發展現況, ”Photonics Industry & Technology
Development Association , 2000 .
[3]洪綉珠,“節能減碳-太陽能電池的運用, ”高雄師範大學工業科技教育
研究所.
[4]R. Williams, "Becquerel Photovoltaic Effect in Binar Compounds". The
Journal of Chemical Physics 32 (5),pp 1505–1514,1960.
[5] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction
photocell for converting solar radiation into electrical power,” J . Appl. Phy,vol.8,
pp.676 ,1954.
[6] Frank Dimroth, "Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs
concentrator solar cells with 44.7% efficiency."Progress in Photovoltaics: Research and
Applications 22.3 ,pp. 277-282 , 2014.
[7] "Sharp develops concentrator solar cell with world’s highest conversion efficiency of 43.5%". http://phys.org/news/2012-05-sharp-solar-cell-worlds-highest.html
[8] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[9] J. Zhao, A. Wang and M.A. Green, “High-efficiency PERL and PERT silicon solar
cells on FZ and MCZ substrates,” Solar Energy Materials and Solar Cells, pp.
429-435, 2001.
[10] Sebastian Gatz, Thorsten Dullweber, and Rolf Brendel, “ Evaluation of Series
Resistance Losses in Screen-Printed Solar Cells With Local Rear Contacts,”
IEEE journal of photovoltaics, vol. 1, NO. 1, 2011.
[11] Boris Veith-Wolf, Jianhui Wang, Milja Hannu-Kuure, Ning Chen, “Siloxane-Based Capping Layers For Al2O3 As Silicon-Nitride Replacement In Industrial-Type Perc Solar Cells,” 29th European Photovoltaic Solar Energy Conference and Exhibition, 2014.
[12] Urrejola, Elias, "High efficiency industrial PERC solar cells with all PECVD-based rear surface passivation." Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011.
[13] D. Zielke, J.H.Petermann, F. Werner, B. Veith, “21.7 % Efficient PERC
Solar Cells With Alox Tunneling Layer,” 26th European Photovoltaic Solar
Energy Conference and Exhibition.
[14] Petermann, Jan Hendrik, Dimitri Zielke, Jan Schmidt, Felix Haase. "19%‐
efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using
porous silicon." Progress in Photovoltaics:Research and Applications vol.20.1,
pp. 1-5, 2012.
[15] J. Schmidt1, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden and W. M.
M. Kessels, “Surface Passivation of High-efficiency Silicon Solar Cells by
Atomic-layer-deposited Al2O3” , Progress In Photovoltaics: Research And Applications 16, pp.461–466, 2008.
[16] Vermang, Bart, Anne Lorenz, Patrick Choulat, Jorg Horzel. "Approach for
Al2O3 rear surface passivation of industrial p‐type Si PERC above 19%."
Progress in Photovoltaics: Research and Applications 20.3, pp.269-273,2012.
[17] Saint-Cast, Pierre, Daniel Kania, Lucas Weiss, Marc Hofmann, "High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide." IEEE Electron Device Letters 31.7, pp.695-697, 2010.
[18] P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu,
“Very low surface recombination velocity on p-type c-Si by high-rate
plasma-deposited aluminum oxide,” Appl. Phys. Lett., vol. 95, 2009.
[19] B. Hoex, J. J. H. Gielis, M. C. M. V. D. Sanden, and W. M. M. Kessels,
“On the c-Si surface passivation mechanism by the negative-chargedielectric
Al2O3,” J. Appl. Phys., vol. 104, no. 11, pp. 113, 2008.
[20] Vermang, Bart, H.Goverde , A.Uruena , A.Lorenz "Blistering in ALD Al 2 O 3 passivation layers as rear contacting for local Al BSF Si solar cells." Solar Energy Materials and Solar Cells vol.101, pp.204-209, 2012.
[21] Jan Schmidt, Boris Veith, and Rolf Brendel, “Effective surface passivation
of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks” , P hys. Status Solidi RRL 3, No. 9, pp. 287–289 , 2009.
[22] B. Vermang,n, H.Goverde , A.Uruena, A.Lorenz , E.Cornagliotti , A.Rothschild ,
J.John , J. Poortmans, R.Mertens, “Blistering in ALDAl2O3 passivation layers as
rear contacting for local Al BSF Si solar cells” , Solar Energy Materials & Solar
Cells 101, pp. 204–209, 2012.
[23] Jan Schmidt, Boris Veith, and Rolf Brendel, “Effective surface passivation
of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks” ,
P hys. Status Solidi RRL 3, No. 9, pp.287–289 , 2009 .
[24] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert and R. Brendel, “Contact
formation and recombination at screen-printed local aluminum-alloy silicon solar
cell base contacts ” ,IEEE Transactions on Electron Device, pp. 3239-3245, 2011.
[25] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert and Rolf Brendel ,
”Recombination at local aluminum-alloy silicon solar cell base contacts
by dynamic infrared lifetime mapping,” Energy Procedia, pp. 521-526, 2011.
[26]曹天相 , “背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:
初步研究, ” 國立清華大學光電工程研究所, 2015.
[27] https://www.ezphysics.nchu.edu.tw
[28] https://zh.wikipedia.org
[29] https://zh.wikipedia.org
[30]盧廷昌,王興宗, “半導體雷射導論,”五南圖書,2008.
[31] http://www.energie-solaire.ovh.org/
[32]B.E.A Saleh , M.C Teich , “Fundamental of photonics second edition” ,Wiley
seris in pure and applied optics.
[33] https://sywung.files.wordpress.com/2007/10/2-1.pdf
[34] B. Van Zeghbroeck, “Principles of semiconductor device” , 2011.
[35] http://www.pvmeasurements.net/html/2014/faq_0805/60.html
[36] http://www.pvmeasurements.net/html/2014/faq_0805/60.html
[37] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering,
Chap. 3, John Wiley & Sons, Ltd, 2003.
[38] Purnomo Sidi Priambodo, Didik Sukoco,Wahyudi Purnomo, Harry Sudibyo
Djoko ,Hartanto, “Electric Energy Management and Engineering in Solar Cell
System,” Intech open access publisher.
[39]黃惠良,曾百亨, “太陽電池” ,五南圖書出版股份有限公司,2008
[40] Lammert, D.Michael, and Richard J. Schwartz. "The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight." IEEE Transactions on Electron Devices ,vol. 24.4, pp.337-342, 1977.
[41] Conley, B. R., Naseem, H., Sun, G., Sharps, P., & Yu, S. Q. “ High efficiency MJ solar cells and TPV using SiGeSn materials, ” In Photovoltaic Specialists Conference (PVSC) 38th IEEE ,pp. 1189-1192, 2012.


[42] Shreesh Narasimha, Ajeet Rohatgi, “An Optimized Rapid Aluminum Back Surface Field Technique for Silicon Solar Cells” , IEEE transactions on electron devices, vol. 46, no. 7, july 1999.
[43] Stuart D McDonald, Kazuhiro Nogita, Arne K Dahle, “Eutectic nucleation in
Al–Si alloys , ” Acta Materialia Volume 52, Issue 14, pp.4273–4280, 2004.
[44] Konrad Mertens, "Photovoltaik - Lehrbuch zu Grundlagen, Technologie und
Praxis, "Hanser Verlag, 2011.
[45] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c -Si surface passivation mechanism by the negative-charge-dielectric
Al2O 3, ” Journal Of Applied Physics, vol.104, 2008.
[46] Liu, Han-Yin, Bo-Yi Chou, Wei-Chou Hsu, "Enhanced AlGaN/GaN MOS-HEMT
performance by using hydrogen peroxide oxidation technique." IEEE Transactions on Electron Devices vol. 60.1,pp. 213-220, 2013.
[47] Jia-Fa Fan,Koji SUGIOKA ,Koici TOYODA , “Low-Temperature Growth of Thin
Films of Al2O3 by Sequential Surface Chemical Reaction of trimethylaluminum and H2O2,”Janpanese Journal of Applied Physics vol.30,p1139-1141,1991.
[48]國家實驗研究院-儀器科技研究中心
https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[49] C.H. Seager, D.S. Ginley, “Passivation of grain boundaries in polycrystalline
silicon,” Appl. Phys. Lett., vol. 34, pp.337-340, 1979
[50] Ronald A. Sinton, “Quasi-Steady-State Photoconductance, A New Method For Solar Cell Material And Device Characterization,” IEEE, 1996.
[51] Casey Jr, H. C., G. G. Fountain, R. G. Alley, "Low interface trap density for remote plasma deposited SiO2 on n‐type GaN." Applied Physics Letters.vol. 68.13 ,pp. 1850-1852, 1996.
[52] Kaminski, Vandellea, Favea, J.P Boyeaux."Aluminium BSF in silicon solar cells." Solar Energy Materials and Solar Cells 72.1, pp. 373-379, 2002.
[53]吳昆叡, "陽極氧化鋁用於背表面鈍化之太陽能電池研究,"國立清華大學 光電工程研究所碩士論文,2016.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *