帳號:guest(3.144.124.161)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林岱穎
作者(外文):Lin, Tai Ying
論文名稱(中文):具表面抗反射奈微結構之多晶矽太陽能電池製作:初步研究
論文名稱(外文):Preliminary Study of Polycrystalline Silicon Solar Cells with Nanostructured Surface Formed by Chemical Etching
指導教授(中文):王立康
指導教授(外文):Wang, Li Karn
口試委員(中文):陳昇暉
張正陽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066535
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:53
中文關鍵詞:奈米結構化學蝕刻多晶矽
外文關鍵詞:nanostructurechemical etchingpolycrystalline silicon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:345
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主旨是以酸蝕刻液將p型多晶矽晶片(polycrystalline silicon wafer)表面形成擁有低反射率之奈微結構,製作出低成本高效率之太陽能電池。首先將裸片(bare wafer)浸泡於氫氟酸、硝酸與水的混合液體中,形成表面黑色之晶片後,以UVB積分球(UVB integrating sphere)量測其表面反射率(Reflectance),並且找尋平均在400-1000nm波長有低反射率之配方,接著使用爐管進行磷擴散,但擴散後不將磷玻璃(phosphosilicate glass, PSG)去除,最後在矽晶片正反面分別網印(screen printing)上銀漿和鋁漿後,放入烤箱高溫燒結,完成元件後再切邊絕緣。此架構用表面之奈微結構代替抗反射層(antireflection coating, ARC),以保留磷玻璃的方式取代鈍化層(passivation layer),如此一來便降低製作成本和步驟。
The purpose of this study is to fabricate a low-cost and high-efficiency solar cell with nanostructured surface formed by chemical etching. First, we etch bare wafers with an acidic solution in order to form the nanostructure which makes the wafers look like black silicon. Then, the reflectances of the etched wafers are measured by the UVB integrating sphere. We choose a mixture of appropriate acidic solutions to obtain low average reflectance between the wavelength of 400 to 1000 nm. After that, wafers are processed by using the following procedures: phosphorus diffusion without removing phosphorous silicate glass(PSG) layers, forming front and rear contacts by screen-printing, respectively, silver and aluminum paste, and cofiring in a furnace followed by edge isolation. We not only use the nanostructured surface for the purpose of not depositing an antireflection coating(ARC) on the front surface, but also keep the PSG layer formed on the silicon surface during the phosphorous diffusion process for a passivation layer. In this way, lots of cost and steps may be saved.
第一章 序論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究構想與目的 6
1-4 論文架構 6
第二章 基本原理 7
2-1 半導體基礎物理 7
2-1-1 半導體晶體特性與結構 7
2-1-2 載子的產生與復合[25] 8
2-2 太陽能電池元件 10
2-2-1 p-n接面 10
2-2-2 太陽能電池之運作 11
2-2-3 太陽能光譜與頻率響應 12
2-2-4 太陽能電池的等效電路 13
2-2-5 太陽能電池的參數介紹 15
2-2-6 量子效率 19
2-2-7 太陽能電池的效率損失 20
2-2-8 背表面電場 21
2-3 少數載子生命週期[35] 22
第三章 研究方法及實驗步驟 24
3-1 太陽能電池製作流程 24
3-2 製程步驟介紹 26
3-2-1 前置處理 26
3-2-2 酸蝕刻 27
3-2-3 磷擴散 27
3-2-4 磷玻璃去除 28
3-2-5 抗反射層沉積 28
3-2-6 網印電極 29
3-2-7 電極共燒 30
3-2-8 切邊絕緣 31
第四章 數據分析與討論 32
4-1 少數載子生命週期與iVOC之量測結果與討論 32
4-1-1 表面奈微結構生成對少數載子生命期的影響 32
4-1-2 擴散後之少數載子生命週期與iVOC量測 34
4-2 具抗反射奈微結構之反射率討論 36
4-3 掃描式電子顯微鏡下之觀察 38
4-3-1 表面結構之比較 39
4-3-2 BSF厚度 43
4-4 實驗組與對照組之太陽能電池結果比較 45
第五章 結論 47
參考文獻 48

[1] 林明獻, 太陽能電池技術入門: 全華圖書股份有限公司, 2009.
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[3] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961.
[4] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[5] J. Zhao, A. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, pp. 429-435, 1// 2001.
[6] 林堅楊 and 林坤立, "單晶矽太陽能電池製程及其頻譜響應之研究," 國立雲林科技大學電子工程所.
[7] S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection‐level‐dependent recombination velocities at the Si‐SiO2 interface for various dopant concentrations," Journal of Applied Physics, vol. 75, pp. 1611-1615, 1994.
[8] A. G. Aberle and R. Hezel, "Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride," Progress in Photovoltaics, vol. 5, pp. 29-50, 1997.
[9] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. De Wolf, et al., "Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge," Solar Energy Materials and Solar Cells, vol. 90, pp. 3438-3443, 11/23/ 2006.
[10] I. Martı́n, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla, "Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films," Applied Physics Letters, vol. 79, pp. 2199-2201, 2001.
[11] J. Y. Lee, "Rapid Thermal Processing of Silicon Solar Cells—Passivation and
Diffusion," Fraunhofer Institute for Solar Energy Systems, 2003.
[12] A. Ebong, M. Hillali, and A. Rohatgi, "Rapid photo-assisted forming gas anneal (FGA) for high quality screen-printed contacts for silicon solar cells," in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, pp. 264-267.
[13] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, "Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells," Applied Physics Letters, vol. 92, p. 063510, 2008.
[14] T. Makoto, T. Mikio, M. Takao, S. Toru, T. Shinya, N. Shoichi, et al., "Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)," Japanese Journal of Applied Physics, vol. 31, p. 3518, 1992.
[15] I. O. Parm, K. Kim, D. G. Lim, J. H. Lee, J. H. Heo, J. Kim, et al., "High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application," Solar Energy Materials and Solar Cells, vol. 74, pp. 97-105, 10// 2002.
[16] M. Schnell, R. Ludemann, and S. Schaefer, "Plasma surface texturization for multicrystalline silicon solar cells," in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, pp. 367-370.
[17] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, et al., "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 57, pp. 179-188, 2/26/ 1999.
[18] B. González-Díaz, R. Guerrero-Lemus, B. Díaz-Herrera, N. Marrero, J. Méndez-Ramos, and D. Borchert, "Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO3 concentrations," Materials Science and Engineering: B, vol. 159–160, pp. 295-298, 3/15/ 2009.
[19] P. Feng, G. Liu, W. Wu, Y. Shi, and Q. Wan, "Improving the Blue Response and Efficiency of Multicrystalline Silicon Solar Cells by Surface Nanotexturing," IEEE Electron Device Letters, vol. 37, pp. 306-309, 2016.
[20] Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, "A novel method to produce black silicon for solar cells," Solar Energy, vol. 85, pp. 1574-1578, 7// 2011.
[21] D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, "Fabrication of silicon nanowire arrays based solar cell with improved performance," Solar Energy Materials and Solar Cells, vol. 95, pp. 215-218, 1// 2011.
[22] M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Applied Physics Letters, vol. 85, pp. 5694-5696, 2004.
[23] Z. Zhao, P. Li, Y. Wei, C. Lu, X. Tan, and A. Liu, "17.3% efficient black silicon solar cell without dielectric antireflection coating," Solar Energy, vol. 110, pp. 714-719, 12// 2014.
[24] H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, et al., "Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency," Nat Nano, vol. 10, pp. 624-628, 07//print 2015.
[25] 盧延昌 and 王興宗, 半導體雷射理論: 五南圖書出版股份有限公司, 2008.
[26] http://www.pveducation.org/.
[27] http://www.materialsnet.com.tw/DocView.aspx?id=7004.
[28] J. L. Gray, "The Physics of the Solar Cell," in Handbook of Photovoltaic Science and Engineering, ed: John Wiley & Sons, Ltd, 2005, pp. 61-112.
[29] http://cocospace.myweb.hinet.net/solartech/rseriesh.html.
[30] W. P. Mulligan, M. J. C. D.H. Rose, D. M. D. Ceuster, K. R. McIntosh, and D. D. S. a. R. M. Swanson, "Manufacture of solar cells wirh 21% efficiency," in proceedings 19th European Photovotaic Solar Engery Conference, 2004.
[31] A. Kaminski, B. Vandelle, A. Fave, J. P. Boyeaux, L. Q. Nam, R. Monna, et al., "Aluminium BSF in silicon solar cells," Solar Energy Materials and Solar Cells, vol. 72, pp. 373-379, 4// 2002.
[32] J. G. Fossum, "Physical operation of back-surface-field silicon solar cells," IEEE Transactions on Electron Devices, vol. 24, pp. 322-325, 1977.
[33] O. von Roos, "A simple theory of back surface field (BSF) solar cells," Journal of Applied Physics, vol. 49, pp. 3503-3511, 1978.
[34] G. Singh, A. Verma, and R. Jeyakumar, "Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field," RSC Advances, vol. 4, pp. 4225-4229, 2014.
[35] 張勁燕, 電子材料: 台灣五南圖書出版股份有限公司.
[36] C.-H. Du, C.-H. Chen, C.-H. Lung, S.-Y. Chen, L.-Y. Li, Y.-H. Lin, et al., "A Well-Controlled PSG Layer on Silicon Solar Cells against Potential Induced Degradation," ECS Journal of Solid State Science and Technology, vol. 4, pp. P97-P100, January 1, 2015 2015.
[37] M. A. Green, 太陽電池工作原理技術與系統應用: 五南圖書出版公司, 2009.
[38] R. Brendel, A. Aberle, A. Cuevas, S. Glunz, G. Hahn, J. Poortmans, et al., "Proceedings of the 3rd International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2013)HF/HNO3 Etching of the Saw Damage," Energy Procedia, vol. 38, pp. 223-233, 2013/01/01 2013.
[39] A. Ali, T. Gouveas, M. A. Hasan, S. H. Zaidi, and M. Asghar, "Influence of deep level defects on the performance of crystalline silicon solar cells: Experimental and simulation study," Solar Energy Materials and Solar Cells, vol. 95, pp. 2805-2810, 10// 2011.
[40] 曹天相, "背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:初步研究," 國立清華大學光電工程研究所.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *