|
[1] 林明獻, 太陽能電池技術入門: 全華圖書股份有限公司, 2009. [2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954. [3] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961. [4] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. [5] J. Zhao, A. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, pp. 429-435, 1// 2001. [6] 林堅楊 and 林坤立, "單晶矽太陽能電池製程及其頻譜響應之研究," 國立雲林科技大學電子工程所. [7] S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection‐level‐dependent recombination velocities at the Si‐SiO2 interface for various dopant concentrations," Journal of Applied Physics, vol. 75, pp. 1611-1615, 1994. [8] A. G. Aberle and R. Hezel, "Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride," Progress in Photovoltaics, vol. 5, pp. 29-50, 1997. [9] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. De Wolf, et al., "Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge," Solar Energy Materials and Solar Cells, vol. 90, pp. 3438-3443, 11/23/ 2006. [10] I. Martı́n, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla, "Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films," Applied Physics Letters, vol. 79, pp. 2199-2201, 2001. [11] J. Y. Lee, "Rapid Thermal Processing of Silicon Solar Cells—Passivation and Diffusion," Fraunhofer Institute for Solar Energy Systems, 2003. [12] A. Ebong, M. Hillali, and A. Rohatgi, "Rapid photo-assisted forming gas anneal (FGA) for high quality screen-printed contacts for silicon solar cells," in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, pp. 264-267. [13] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, "Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells," Applied Physics Letters, vol. 92, p. 063510, 2008. [14] T. Makoto, T. Mikio, M. Takao, S. Toru, T. Shinya, N. Shoichi, et al., "Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)," Japanese Journal of Applied Physics, vol. 31, p. 3518, 1992. [15] I. O. Parm, K. Kim, D. G. Lim, J. H. Lee, J. H. Heo, J. Kim, et al., "High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application," Solar Energy Materials and Solar Cells, vol. 74, pp. 97-105, 10// 2002. [16] M. Schnell, R. Ludemann, and S. Schaefer, "Plasma surface texturization for multicrystalline silicon solar cells," in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, pp. 367-370. [17] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, et al., "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 57, pp. 179-188, 2/26/ 1999. [18] B. González-Díaz, R. Guerrero-Lemus, B. Díaz-Herrera, N. Marrero, J. Méndez-Ramos, and D. Borchert, "Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO3 concentrations," Materials Science and Engineering: B, vol. 159–160, pp. 295-298, 3/15/ 2009. [19] P. Feng, G. Liu, W. Wu, Y. Shi, and Q. Wan, "Improving the Blue Response and Efficiency of Multicrystalline Silicon Solar Cells by Surface Nanotexturing," IEEE Electron Device Letters, vol. 37, pp. 306-309, 2016. [20] Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, "A novel method to produce black silicon for solar cells," Solar Energy, vol. 85, pp. 1574-1578, 7// 2011. [21] D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, "Fabrication of silicon nanowire arrays based solar cell with improved performance," Solar Energy Materials and Solar Cells, vol. 95, pp. 215-218, 1// 2011. [22] M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Applied Physics Letters, vol. 85, pp. 5694-5696, 2004. [23] Z. Zhao, P. Li, Y. Wei, C. Lu, X. Tan, and A. Liu, "17.3% efficient black silicon solar cell without dielectric antireflection coating," Solar Energy, vol. 110, pp. 714-719, 12// 2014. [24] H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, et al., "Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency," Nat Nano, vol. 10, pp. 624-628, 07//print 2015. [25] 盧延昌 and 王興宗, 半導體雷射理論: 五南圖書出版股份有限公司, 2008. [26] http://www.pveducation.org/. [27] http://www.materialsnet.com.tw/DocView.aspx?id=7004. [28] J. L. Gray, "The Physics of the Solar Cell," in Handbook of Photovoltaic Science and Engineering, ed: John Wiley & Sons, Ltd, 2005, pp. 61-112. [29] http://cocospace.myweb.hinet.net/solartech/rseriesh.html. [30] W. P. Mulligan, M. J. C. D.H. Rose, D. M. D. Ceuster, K. R. McIntosh, and D. D. S. a. R. M. Swanson, "Manufacture of solar cells wirh 21% efficiency," in proceedings 19th European Photovotaic Solar Engery Conference, 2004. [31] A. Kaminski, B. Vandelle, A. Fave, J. P. Boyeaux, L. Q. Nam, R. Monna, et al., "Aluminium BSF in silicon solar cells," Solar Energy Materials and Solar Cells, vol. 72, pp. 373-379, 4// 2002. [32] J. G. Fossum, "Physical operation of back-surface-field silicon solar cells," IEEE Transactions on Electron Devices, vol. 24, pp. 322-325, 1977. [33] O. von Roos, "A simple theory of back surface field (BSF) solar cells," Journal of Applied Physics, vol. 49, pp. 3503-3511, 1978. [34] G. Singh, A. Verma, and R. Jeyakumar, "Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field," RSC Advances, vol. 4, pp. 4225-4229, 2014. [35] 張勁燕, 電子材料: 台灣五南圖書出版股份有限公司. [36] C.-H. Du, C.-H. Chen, C.-H. Lung, S.-Y. Chen, L.-Y. Li, Y.-H. Lin, et al., "A Well-Controlled PSG Layer on Silicon Solar Cells against Potential Induced Degradation," ECS Journal of Solid State Science and Technology, vol. 4, pp. P97-P100, January 1, 2015 2015. [37] M. A. Green, 太陽電池工作原理技術與系統應用: 五南圖書出版公司, 2009. [38] R. Brendel, A. Aberle, A. Cuevas, S. Glunz, G. Hahn, J. Poortmans, et al., "Proceedings of the 3rd International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2013)HF/HNO3 Etching of the Saw Damage," Energy Procedia, vol. 38, pp. 223-233, 2013/01/01 2013. [39] A. Ali, T. Gouveas, M. A. Hasan, S. H. Zaidi, and M. Asghar, "Influence of deep level defects on the performance of crystalline silicon solar cells: Experimental and simulation study," Solar Energy Materials and Solar Cells, vol. 95, pp. 2805-2810, 10// 2011. [40] 曹天相, "背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:初步研究," 國立清華大學光電工程研究所.
|