帳號:guest(18.118.210.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林忠穎
作者(外文):Lin, Chung Ying
論文名稱(中文):利用金之超穎介面設計可調控光學近場路由器
論文名稱(外文):A metasurface designed for adaptive optical near-field routing
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen Bin
口試委員(中文):陳國平
吳品頡
口試委員(外文):Chen, Ko Ping
Wu, Pin Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066522
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:43
中文關鍵詞:表面電漿相位調控電漿子
外文關鍵詞:surface plasmonphase modulationplasmonic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在此論文中,我們將不同的奈米共振腔刻在金之超穎介面上,並藉由共振腔長不同產生的相位差也不同的特性,在模擬和實驗上調控入射光耦合進結構後產生的表面電漿波之傳遞方向,不同偏振態的光源會有不同的傳遞方向,達成進場光學路由器多重選擇性的目的。此外,有別於以往表面電漿波的傳遞情形只能用進場光學掃描術量測,我們運用簡單的散射原理,並以一套簡單的共軛聚焦系統的光路量到遠場的電場強度分布情形,同時此情形與透過有效時域差分法計算的模擬結果有非常好的相似性。放眼以後,我們期待此多選擇性近場光學路由器能被廣泛地運用在光學的電路中。
In this paper, the rectangular air-slits are etched in a gold thin film is carefully designed and arranged to form a metasurface. We both numerically and experimentally demonstrate the ability to achieve multiple near-field routing possibilities using plane wave excitations. By changing the polarizations of the optical excitation, adaptive routing paths in the near-field are realized and are observed in the far-field via scattering through a circular groove. We anticipate such adaptive routing of SPP a step closer to the widely envisioned optical circuit in the near future.
摘要......................................................................................................................................I
Abstract...............................................................................................................................II
致謝....................................................................................................................................III
目錄....................................................................................................................................V
圖目錄..............................................................................................................................VI
第一章序論........................................................................................................................1
1.1 前言.......................................................................................................................1
1.2 研究目的與動機...................................................................................................2
1.3 基礎概念與理論模型...........................................................................................4
1.3.1 表面電漿子-電磁極化子.........................................................................................4
1.3.2 金屬結構中相位延遲............................................................................................11
1.3.3 奈米狹縫激發表面電漿波..................................................................................15
第二章超穎介面之設計與數值模擬..............................................................................16
2.1 運算環境.............................................................................................17
2.2 V型奈米腔體設計原理與分析.........................................................................18
2.3 超穎介面.............................................................................................................20
第三章元件製程與實驗量測分析..................................................................................25
3.1 超穎介面元件之製程.........................................................................................26
3.1.1 清洗基板.....................................................................................26
3.1.2 熱蒸鍍 (Thermal evaporation)................................................................26
3.1.3 熱退火 (Thermal annealing)..................................................................27
3.1.4 元件製作.................................................................................................27
3.2 實驗架構與流程.....................................................................................29
3.3 實驗結果與分析..........................................................................................30
3.3.1 水平偏振態入射奈米凹槽超穎介面..................................................31
3.3.2 垂直偏振態入射奈米凹槽超穎介面......................................................32
3.3.3 45˚或-45˚線性偏振態入射奈米凹槽超穎介面.........................................33
3.3.4 左右旋偏振態入射奈米凹槽超穎介面....................................................35
3.3.5 右旋、左旋、45˚、-45˚線性偏振態比較....................................................37
第四章結論與未來展望..................................................................................................38
參考文獻...........................................................................................................................39
附錄...................................................................................................................................43
R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902.
[2] U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review, vol. 50, pp. 573-573, Sep 1936
[3] U. Fano, "On the anomalous diffraction gratings II," Physical Review, vol. 51, pp. 288-288, Feb 1937.
[4] U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik, vol. 32, pp. 393-443, Jul 1938.
[5] U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, vol. 31, pp. 213-222, Mar 1941.
[6] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, pp. 874-881, 1957.
[7] H. A. Atwater, "The promise of plasmonics," Scientific American, vol. 296, pp. 56- 63, Apr 2007.
[8] K. T. Gahagan and G. A. Swartzlander, "Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap," Journal of the Optical Society of America B-Optical Physics, vol. 16, pp. 533-537, Apr 1999.
[9] M. E. J. Friese, J. Enger, H. RubinszteinDunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Physical Review A, vol. 54, pp. 1593-1596, Aug 1996.
[10] Mathieu L Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, vol. 5, pp. 349–356, May 2011.
[11] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature, vol. 394, pp. 348-350, Jul 1998.
[12] W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, "Selective trapping or rotation of isotropic dielectric micro-particles by optical near field in a plasmonic Archimedes spiral, " Nano Lett. 14, 547-552, Jan 2014.
[13] S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, vol. 81, pp. 1714-1716, Aug 2002.
[14] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Physical Review B, vol. 78, 153111, Mar 2010.
[15] By Wenshan Cai, Wonseok Shin, Shanhui Fan, and Mark L. Brongersma, "Elements for plasmonic nanocircuits with three-dimensional slot waveguides," Adv. Mater, vol. 22, pp. 5120-5124, Sep 2010.
[16] Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, vol. 408, pp. 131-314, Mar 2005.
[17] Curto, A.G., et al., "Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna," Science, vol. 329, pp. 930-933, Aug 2010.
[18] Kinkhabwala, A., et al., "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat Photon, vol. 3, pp. 654-657, Oct 2009.
[19] Cai, W., A.P. Vasudev, and M.L. Brongersma, "Electrically controlled nonlinear generation of light with plasmonics," Science, vol. 333, pp. 1720-1723, Sep 2011.
[20] Pu, Y., et al., "Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation," Physical Review Letters, vol. 104, pp. 207402, May 2010.
[21] Zhang, Y., et al., "Three-dimensional nanostructures as highly efficient generators of second harmonic hight," Nano Letters, vol. 11, pp. 5519-5523, Nov 2011.
[22] Michele Celebrano, Xiaofei Wu, Milena Baselli, Swen Großmann, Paolo Biagioni, Andrea Locatelli, Costantino De Angelis, Giulio Cerullo, Roberto Osellame, Bert Hecht, Lamberto Duò, Franco Ciccacci1 and Marco Finazzi, "Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation," Nature Nanotechnology, vol. 10, pp. 412-417, Apr 2015.
[23] Asechlimann, M., M. Bauer, D. Bayer, T. Brixner, F. Javier Garcia de Abajo, and W. Pfeifer, "Adaptive subwavelength control of nano-optical fields," Nature, vol. 446, No. 15, 301-304, 2007.
[24] Li, P.-N., H.-H. Tsao, J.-S. Huang, and C.-B. Huang, "Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis," Opt. Lett., vol. 36, No. 12, 2339-2341, 2011.
[25] M. Asechlimann, "Spatiotemporal control of nanooptical excitations," Proc. Nat. Acad. Science, vol. 107, pp. 5329-5333, Mar 2010.
[26] R. Könenkamp, R. C. Word, J. P. S. Fitzgerald, Athavan Nadarajah, and S. D. Saliba, "Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures," Applied Physics Letters, vol. 101, pp.141114, Oct 2012.
[27] Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu," Coherent modulation of propagating plasmons in silvernanowire-based structures," Small, vol. 7, pp. 593-596, Mar 2011.
[28] H.Wei and H. Xu," Controlling surface plasmon interference in branched silver nanowire structures," Nanoscale, vol. 4, pp. 7149-7154, Sep 2012.
[29] Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu," Branched silver nanowires as controllable plasmon routers," Nano Lett., vol.10, pp. 1950-1954, Apr 2010.
[30] P. Tuchscherer, C. Rewitz, D. V. Voronine, F. Javier Garcíade Abajo, W. Pfeiffer, and T. Brixner," Analytic coherent control of plasmon propagation in nanostructures, " Opt. Express, vol. 17, pp. 14235-14259, Jul 2009.
[31] M. I. Stockman, S. V. Faleev, and D. J. Bergman," Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett., vol. 88, 067402, Feb 2002.
[32] M. Sukharev and T. Seideman," Phase and polarization control as a route to plasmonic nanodevices," Nano Lett., vol. 6, pp.715 (2006).
[33] X. Li and M. I. Stockman," Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B, vol. 77, pp.195-109–10, May 2008.
[34] M. Sukharev and T. Seideman," Coherent control of light propagation via nanoparticle arrays," J. Phys. B, vol. 40, pp. S283–S298, Feb 2007.
[35] S. Choi, D. Park, C. Lienau, M. S. Jeong, C. C. Byeon, D. Ko, and D. S. Kim," Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array," Opt. Express, vol. 16, pp. 12075–12083, Aug 2008.
[36] Rewitz, C. et.al, "Coherent control of plasmon propagation in a nanocircuit," Phys. Rev. Appl., vol. 1, No. 1, 014007, 2014.
[37] Y-T. Hung, C-B. Huang, and J-S. Huang, "Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction," Optics Express, vol. 20, pp. 20342-20355, Aug 2012.
[38] W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, "Mode conversion in high-definition plasmonic optical nanocircuits," Nano Lett., vol. 14, pp.3881-3886, Jun 2014.
[39] Arian Kriesch, Stanley P. Burgos, Daniel Ploss, Hannes Pfeifer, Harry A. Atwater, and Ulf Peschel, "Functional Plasmonic Nanocircuits with Low Insertion and Propagation Losses," Nano Lett., vol. 13, pp. 4539−4545, Aug 2013.
[40] J. Lin, J. P. B. Mueller, Q. Wang, G. H. Yuan, N. Antoniou, X. C. Yuan, et al., "Polarization-controlled tunable directional coupling of surface plasmon polaritons," Science, vol. 340, pp. 331-334, Apr 2013.
[41] Anders Pors and Sergey I. Bozhevolnyi, "Waveguide metacouplers for in-plane polarimetry," Phys. Rev. Appl., vol. 5, 064015, Jul 2016.
[42] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, pp. 333-337, Oct 2011.
[43] X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, 48 "Broadband Light Bending with Plasmonic Nanoantennas," Science, vol. 335, pp. 427-427, Jan 2012.
[44] F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-Plane Reflection and Refraction of Lightby Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities," Nano Letters, vol. 12, pp. 1702-1706, Mar 2012.
[45] L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, et al., "Dispersionless Phase Discontinuities for Controlling Light Propagation," Nano Letters, vol. 12, pp. 5750-5755, Nov 2012.
[46] N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, et al., "Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces," Ieee Journal of Selected Topics in Quantum Electronics, vol. 19, p. 23, May-Jun 2013.
[47] E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light-Science & Applications, vol. 3, p. 4, May 2014.
[48] F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters, vol. 105, p. 4, Sep 2014.
[49] J. B. Sun, X. Wang, T. B. Y. Xu, Z. A. Kudyshev, A. N. Cartwright, and N. M. Litchinitser, "Spinning Light on the Nanoscale," Nano Letters, vol. 14, pp. 2726-2729, May 2014.
[50] C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, "Creating optical near-field orbital angular momentum in a gold metasurface," Nano Lett., vol. 15, pp.2746-2750, Mar 2015.
[51] Mohammadreza Khorasaninejad, Wei Ting Chen, Robert C. Devlin, Jaewon Oh, Alexander Y. Zhu, Federico Capasso, "Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, " Science, vol. 352, pp. 1190-1194, Jun 2016.
[52] T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, et al., "Babinet's principle for optical frequency metamaterials and nanoantennas," Physical Review B, vol. 76, p. 4, Jul 2007.
[53] M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, "Babinet to the Half: Coupling of Solid and Inverse Plasmonic Structures," Nano Letters, vol. 13, pp. 4428-4433, Sep 2013.
[54] A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," Ieee Transactions on Electromagnetic Compatibility, vol. 22, pp. 191-202, 1980.
[55] A. Taflove and S. Hagness, The Finite-Difference Time-Domain Method, 3rd ed., 2005.
[56] J.P.Berenger. et al., "A perfectly matched layer for the absorption of electromagnetic-waves," Journal of Computational Physics, vol. 114, pp. 185-200, 1994.
[57] 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊二十八卷二期 P472-485. 民國89年10月
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *