|
R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902. [2] U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review, vol. 50, pp. 573-573, Sep 1936 [3] U. Fano, "On the anomalous diffraction gratings II," Physical Review, vol. 51, pp. 288-288, Feb 1937. [4] U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik, vol. 32, pp. 393-443, Jul 1938. [5] U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, vol. 31, pp. 213-222, Mar 1941. [6] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, pp. 874-881, 1957. [7] H. A. Atwater, "The promise of plasmonics," Scientific American, vol. 296, pp. 56- 63, Apr 2007. [8] K. T. Gahagan and G. A. Swartzlander, "Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap," Journal of the Optical Society of America B-Optical Physics, vol. 16, pp. 533-537, Apr 1999. [9] M. E. J. Friese, J. Enger, H. RubinszteinDunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Physical Review A, vol. 54, pp. 1593-1596, Aug 1996. [10] Mathieu L Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, vol. 5, pp. 349–356, May 2011. [11] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature, vol. 394, pp. 348-350, Jul 1998. [12] W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, "Selective trapping or rotation of isotropic dielectric micro-particles by optical near field in a plasmonic Archimedes spiral, " Nano Lett. 14, 547-552, Jan 2014. [13] S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, vol. 81, pp. 1714-1716, Aug 2002. [14] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Physical Review B, vol. 78, 153111, Mar 2010. [15] By Wenshan Cai, Wonseok Shin, Shanhui Fan, and Mark L. Brongersma, "Elements for plasmonic nanocircuits with three-dimensional slot waveguides," Adv. Mater, vol. 22, pp. 5120-5124, Sep 2010. [16] Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, vol. 408, pp. 131-314, Mar 2005. [17] Curto, A.G., et al., "Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna," Science, vol. 329, pp. 930-933, Aug 2010. [18] Kinkhabwala, A., et al., "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat Photon, vol. 3, pp. 654-657, Oct 2009. [19] Cai, W., A.P. Vasudev, and M.L. Brongersma, "Electrically controlled nonlinear generation of light with plasmonics," Science, vol. 333, pp. 1720-1723, Sep 2011. [20] Pu, Y., et al., "Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation," Physical Review Letters, vol. 104, pp. 207402, May 2010. [21] Zhang, Y., et al., "Three-dimensional nanostructures as highly efficient generators of second harmonic hight," Nano Letters, vol. 11, pp. 5519-5523, Nov 2011. [22] Michele Celebrano, Xiaofei Wu, Milena Baselli, Swen Großmann, Paolo Biagioni, Andrea Locatelli, Costantino De Angelis, Giulio Cerullo, Roberto Osellame, Bert Hecht, Lamberto Duò, Franco Ciccacci1 and Marco Finazzi, "Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation," Nature Nanotechnology, vol. 10, pp. 412-417, Apr 2015. [23] Asechlimann, M., M. Bauer, D. Bayer, T. Brixner, F. Javier Garcia de Abajo, and W. Pfeifer, "Adaptive subwavelength control of nano-optical fields," Nature, vol. 446, No. 15, 301-304, 2007. [24] Li, P.-N., H.-H. Tsao, J.-S. Huang, and C.-B. Huang, "Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis," Opt. Lett., vol. 36, No. 12, 2339-2341, 2011. [25] M. Asechlimann, "Spatiotemporal control of nanooptical excitations," Proc. Nat. Acad. Science, vol. 107, pp. 5329-5333, Mar 2010. [26] R. Könenkamp, R. C. Word, J. P. S. Fitzgerald, Athavan Nadarajah, and S. D. Saliba, "Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures," Applied Physics Letters, vol. 101, pp.141114, Oct 2012. [27] Z. Li, S. Zhang, N. J. Halas, P. Nordlander, and H. Xu," Coherent modulation of propagating plasmons in silvernanowire-based structures," Small, vol. 7, pp. 593-596, Mar 2011. [28] H.Wei and H. Xu," Controlling surface plasmon interference in branched silver nanowire structures," Nanoscale, vol. 4, pp. 7149-7154, Sep 2012. [29] Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu," Branched silver nanowires as controllable plasmon routers," Nano Lett., vol.10, pp. 1950-1954, Apr 2010. [30] P. Tuchscherer, C. Rewitz, D. V. Voronine, F. Javier Garcíade Abajo, W. Pfeiffer, and T. Brixner," Analytic coherent control of plasmon propagation in nanostructures, " Opt. Express, vol. 17, pp. 14235-14259, Jul 2009. [31] M. I. Stockman, S. V. Faleev, and D. J. Bergman," Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett., vol. 88, 067402, Feb 2002. [32] M. Sukharev and T. Seideman," Phase and polarization control as a route to plasmonic nanodevices," Nano Lett., vol. 6, pp.715 (2006). [33] X. Li and M. I. Stockman," Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B, vol. 77, pp.195-109–10, May 2008. [34] M. Sukharev and T. Seideman," Coherent control of light propagation via nanoparticle arrays," J. Phys. B, vol. 40, pp. S283–S298, Feb 2007. [35] S. Choi, D. Park, C. Lienau, M. S. Jeong, C. C. Byeon, D. Ko, and D. S. Kim," Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array," Opt. Express, vol. 16, pp. 12075–12083, Aug 2008. [36] Rewitz, C. et.al, "Coherent control of plasmon propagation in a nanocircuit," Phys. Rev. Appl., vol. 1, No. 1, 014007, 2014. [37] Y-T. Hung, C-B. Huang, and J-S. Huang, "Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction," Optics Express, vol. 20, pp. 20342-20355, Aug 2012. [38] W.-H. Dai, F.-C. Lin, C.-B. Huang, and J.-S. Huang, "Mode conversion in high-definition plasmonic optical nanocircuits," Nano Lett., vol. 14, pp.3881-3886, Jun 2014. [39] Arian Kriesch, Stanley P. Burgos, Daniel Ploss, Hannes Pfeifer, Harry A. Atwater, and Ulf Peschel, "Functional Plasmonic Nanocircuits with Low Insertion and Propagation Losses," Nano Lett., vol. 13, pp. 4539−4545, Aug 2013. [40] J. Lin, J. P. B. Mueller, Q. Wang, G. H. Yuan, N. Antoniou, X. C. Yuan, et al., "Polarization-controlled tunable directional coupling of surface plasmon polaritons," Science, vol. 340, pp. 331-334, Apr 2013. [41] Anders Pors and Sergey I. Bozhevolnyi, "Waveguide metacouplers for in-plane polarimetry," Phys. Rev. Appl., vol. 5, 064015, Jul 2016. [42] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, pp. 333-337, Oct 2011. [43] X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, 48 "Broadband Light Bending with Plasmonic Nanoantennas," Science, vol. 335, pp. 427-427, Jan 2012. [44] F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-Plane Reflection and Refraction of Lightby Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities," Nano Letters, vol. 12, pp. 1702-1706, Mar 2012. [45] L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, et al., "Dispersionless Phase Discontinuities for Controlling Light Propagation," Nano Letters, vol. 12, pp. 5750-5755, Nov 2012. [46] N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, et al., "Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces," Ieee Journal of Selected Topics in Quantum Electronics, vol. 19, p. 23, May-Jun 2013. [47] E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light-Science & Applications, vol. 3, p. 4, May 2014. [48] F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters, vol. 105, p. 4, Sep 2014. [49] J. B. Sun, X. Wang, T. B. Y. Xu, Z. A. Kudyshev, A. N. Cartwright, and N. M. Litchinitser, "Spinning Light on the Nanoscale," Nano Letters, vol. 14, pp. 2726-2729, May 2014. [50] C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, "Creating optical near-field orbital angular momentum in a gold metasurface," Nano Lett., vol. 15, pp.2746-2750, Mar 2015. [51] Mohammadreza Khorasaninejad, Wei Ting Chen, Robert C. Devlin, Jaewon Oh, Alexander Y. Zhu, Federico Capasso, "Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, " Science, vol. 352, pp. 1190-1194, Jun 2016. [52] T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, et al., "Babinet's principle for optical frequency metamaterials and nanoantennas," Physical Review B, vol. 76, p. 4, Jul 2007. [53] M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, "Babinet to the Half: Coupling of Solid and Inverse Plasmonic Structures," Nano Letters, vol. 13, pp. 4428-4433, Sep 2013. [54] A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," Ieee Transactions on Electromagnetic Compatibility, vol. 22, pp. 191-202, 1980. [55] A. Taflove and S. Hagness, The Finite-Difference Time-Domain Method, 3rd ed., 2005. [56] J.P.Berenger. et al., "A perfectly matched layer for the absorption of electromagnetic-waves," Journal of Computational Physics, vol. 114, pp. 185-200, 1994. [57] 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊二十八卷二期 P472-485. 民國89年10月
|