帳號:guest(18.216.27.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):溫正齊
作者(外文):Wen, Cheng Chi
論文名稱(中文):非晶結構於波長與次波長尺寸的光學特性之研究
論文名稱(外文):Study on the optical response of amorphous structure under wavelength and sub-wavelength scale
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu Chueh
口試委員(中文):李明昌
何榮銘
口試委員(外文):Lee, Ming Chang
Ho, Rong Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066519
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:非晶結構波長尺度次波長尺度光學特性模態密度
外文關鍵詞:Amorphous structureWavelength scaleSub-wavelength scaleOptical responseDensity of states
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
非晶結構是一種晶格缺乏空間週期性排列的結構,在過去幾年受到許多研究人員的關注。非晶結構可以在不同材料中找到,例如金屬合金、矽、以及共聚物。另外在自然界的生物構造中都可以看到,像是鳥類的羽毛,或是昆蟲甲殼表面,這些結構讓生物體表面有光鮮亮麗的色彩。非晶結構的特性包括結構的無方向性以及非虹彩色彩,使非晶結構有完全光子能隙的特性。非晶結構有很多種形態,我們針對相分離非序性的非晶結構來討論。
在這份研究裡,我們利用時域有限差分法來分析非晶結構光學性質。第一部分討論非晶結構在可見光波長尺寸的特性。我們利用數值方法來模擬三維空間中混合物相分離的過程,藉由改變建構參數數值來建構不同特徵長度的非晶光子晶體,並分析它們的結構與幾何性質。我們利用數值分析來表示不同結構參數建構的非晶結構的模態密度,藉由模態密度討論結構的光學性質。我們也計算結構對應的空間傅立葉頻譜來檢測不同結構的特徵長度,並且利用特徵長度的變化來討論光子能隙的頻段變化。這些結果有助於以非晶介電質光子晶體為材料的光學顯示元件設計。
在第二部分,我們討論非晶結構在次波長尺度的光學性質。當多孔薄膜的孔洞尺寸遠小於可見光波長時,多孔薄膜的光學性質就可以用相同等效折射率的均質薄膜來表示。我們先檢測由不同建構參數數值建構的非晶結構對應的臨界特徵長度,當非晶結構的特徵長度小於臨界特徵長度,該非晶結構就可以視為有相同等效折射率的均質薄膜。我們也檢測次波長尺度非晶薄膜的光學性質,可以藉由改變薄膜特性來控制對應的光學性質。這些結果對於利用次波長尺度非晶結構製作光學薄膜元件有相當程度的幫助。
Amorphous structures have attracted increasing research attention due to their interesting characteristics, such as isotropic structures and noniridescent colors. In this work, studies are presented based on finite-difference time-domain (FDTD) method for analyzing the optical characteristics of amorphous structures. In the first part, we present photonic amorphous structures with different characteristic lengths and analyze their structural and topological properties. We present the numerical analysis to characterize the density of state (DOS) of amorphous structures based on different structural parameters. The corresponding spatial Fourier spectra of amorphous structures are calculated to examine the characteristic length, and the photonic band gap properties will be discussed in association with the characteristic length. These results are crucial for the design of new optical materials display devices base on dielectric amorphous photonic structures. In the second part, we investigate the effective optical properties of nanoporous materials with amorphous structures. If the pore sizes are much smaller than the wavelength of visible light, the nanoporous structure can be considered as a homogeneous medium with the same effective refractive index. By changing the properties of effective media, the optical properties of films can be controlled.
Abstract ........................................................................................ i
Contents ........................................................................................ ii
1 Introduction .................................................................................. 1
1.1 Introduction of Porous Structure ......................................................... 1
1.2 Amorphous Structure ...................................................................... 4
1.2.1 Structural Properties ............................................................... 7
1.2.2 Structural Analysis ................................................................. 8
1.3 Motivation ............................................................................... 9
2 Method ........................................................................................ 11
2.1 Construction of Structure ................................................................ 11
2.2 Effective Medium Model ................................................................... 13
2.3 Optical Simulation and Analysis of Amorphous structures .................................. 15
2.3.1 Finite-Difference Time Domain method ................................................ 15
2.3.1.1 Reflectance spectra ............................................................ 17
2.3.1.2 Density of States .............................................................. 17
2.3.2 Thin-Film interference .............................................................. 19
2.3.3 Pearson product-moment correlation coefficient ...................................... 21
2.3.4 CIE Color Map ....................................................................... 23
3 Amorphous Structure on the Wavelength Scale ................................................... 26
3.1 Effect of Construction Parameters on Structural and Optical Properties ................... 28
3.1.1 Time of Evolution ................................................................... 28
3.1.2 Mobility ............................................................................ 30
3.2 Effect of Structural and Material Parameters on Structural and Optical Properties ........ 32
3.2.1 Standard Deviation .................................................................. 32
3.2.2 Volume Fraction ..................................................................... 33
3.2.3 Refractive index .................................................................... 35
4 Amorphous Structure on the Sub-wavelength Scale ............................................... 38
4.1 Verification of Critical Characteristic Length ........................................... 38
4.1.1 Time of Evolution ................................................................... 41
4.1.2 Mobility ............................................................................ 42
4.1.3 Standard Deviation .................................................................. 42
4.1.4 Volume Fraction ..................................................................... 43
4.2 Effect of Different Parameters on Reflection ............................................. 44
4.2.1 Thickness ........................................................................... 44
4.2.2 Volume Fraction ..................................................................... 46
4.2.3 Incident Angle ...................................................................... 48
4.3 Effect of Spatial Arrangement ............................................................ 50
4.3.1 Verification of Critical Lattice Constant ........................................... 51
4.3.2 Thickness ........................................................................... 52
4.3.3 Volume Fraction ..................................................................... 54
4.3.4 Incident Angle ...................................................................... 55
5 Conclusion .................................................................................... 58
Bibliography .................................................................................... 58
[1] Y. H. Ho, K. H. Ting, K. Y. Chen, S. W. Liu, W. C. Tian, and P. K. Wei, “Omnidirectional
antireflection polymer films nanoimprinted by density-graded nanoporous silicon
and image improvement in display panel,” Optics Express 21, 29827–29835 (2013).
[2] S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner,
J. J. Baumberg, and U. Steiner, “A 3d optical metamaterial made by self-assembly,”
Advanced Materials 24 (2012).
[3] V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile
photonic crystal templates for the infrared spectral range,” Optics Letters 29, 2061–
2063 (2004).
[4] B. Dong, X. Liu, T. Zhan, L. Jiang, H. Yin, F. Liu, and J. Zi, “Structural coloration
and photonic pseudogap in natural random close-packing photonic structures,” Optics
Express 18, 14430–14438 (2010).
[5] S. F. Liew, J. K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne, C. S. OHern, and H. Cao,
“Photonic band gaps in three-dimensional network structures with short-range order,”
Physical Review A 84, 063818 (2011).
[6] V. Saranathan, J. D. Forster, H. Noh, S. F. Liew, S. G. Mochrie, H. Cao, E. R. Dufresne,
and R. O. Prum, “Structure and optical function of amorphous photonic nanostructures
from avian feather barbs: a comparative small angle x-ray scattering (saxs) analysis of
230 bird species,” Journal of The Royal Society Interface p. rsif20120191 (2012).
[7] J. Trevino, C. Forestiere, G. Di Martino, S. Yerci, F. Priolo, and L. Dal Negro,
“Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells,”
Optics Express 20, A418–A430 (2012).
[8] Y. C. Chen and G. Bahl, “Raman cooling of solids through photonic density of states
engineering,” Optica 2, 893–899 (2015).
[9] J. E. Agudo, P. J. Pardo, H. S´anchez, ´A. L. P´erez, and M. I. Suero, “A low-cost real
color picker based on arduino,” Sensors 14, 11943–11956 (2014).
[10] J. P. Best, J. Cui, M. M¨ullner, and F. Caruso, “Tuning the mechanical properties
of nanoporous hydrogel particles via polymer cross-linking,” Langmuir 29, 9824–9831
(2013).
[11] M. C. Orilall and U. Wiesner, “Block copolymer based composition and morphology
control in nanostructured hybrid materials for energy conversion and storage: solar cells,
batteries, and fuel cells,” Chemical Society Reviews 40, 520–535 (2011).
[12] T. Frot, W. Volksen, S. Purushothaman, R. Bruce, and G. Dubois, “Application of
the protection/deprotection strategy to the science of porous materials,” Advanced
Materials 23, 2828–2832 (2011).
[13] H. Zhang and A. I. Cooper, “Synthesis and applications of emulsion-templated porous
materials,” Soft Matter 1, 107–113 (2005).
[14] X. Li, X. Yu, and Y. Han, “Polymer thin films for antireflection coatings,” Journal of
Materials Chemistry C 1, 2266–2285 (2013).
[15] S. Walheim, E. Sch¨affer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer
films as high-performance antireflection coatings,” Science 283, 520–522 (1999).
[16] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike
behavior in the vicinity of the photonic band gap,” Physical Review B 62,
10696 (2000).
[17] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,”
Physical Review Letters 58, 2059 (1987).
[18] S. John, “Strong localization of photons in certain disordered dielectric superlattices,”
Physical Review Letters 58, 2486 (1987).
[19] V. Saranathan, C. O. Osuji, S. G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R.
Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network
gyroid (i4132) photonic crystals in butterfly wing scales,” Proceedings of the National
Academy of Sciences 107, 11676–11681 (2010).
[20] A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Threedimensional
simple cubic woodpile photonic crystals made from chalcogenide glasses,”
Applied Physics Letters 83, 4480–4482 (2003).
[21] A. Charlesby, “Effect of temperature on the structure of highly polymerized hydrocarbons,”
Proceedings of the Physical Society 57, 510 (1945).
[22] T. Ichikawa, “The assembly of hard spheres as a structure model of amorphous iron,”
Physica Status Solidi A 29, 293–302 (1975).
[23] J. J. Kim, Y. Choi, S. Suresh, and A. Argon, “Nanocrystallization during nanoindentation
of a bulk amorphous metal alloy at room temperature,” Science 295, 654–657
(2002).
[24] X. Li, Y. Zhong, M. Cai, M. P. Balogh, D. Wang, Y. Zhang, R. Li, and X. Sun, “Tinalloy
heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes
in rechargeable lithium ion batteries,” Electrochimica Acta 89, 387–393 (2013).
[25] L. Morsdorf, K. G. Pradeep, G. Herzer, A. Kov´acs, R. Dunin-Borkowski, I. Povstugar,
G. Konygin, P. Choi, and D. Raabe, “Phase selection and nanocrystallization in cufree
soft magnetic fesinbb amorphous alloy upon rapid annealing,” Journal of Applied
Physics 119, 124903 (2016).
[26] M. Treacy and K. Borisenko, “The local structure of amorphous silicon,” Science 335,
950–953 (2012).
[27] J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang,
S. X. Mao et al., “Two-phase electrochemical lithiation in amorphous silicon,” Nano
Letters 13, 709–715 (2013).
[28] C. M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui,
“High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,”
Advanced Energy Materials 2, 628–633 (2012).
[29] H. J. Son, W.Wang, T. Xu, Y. Liang, Y.Wu, G. Li, and L. Yu, “Synthesis of fluorinated
polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic
properties,” Journal of the American Chemical Society 133, 1885–1894 (2011).
[30] Y. Chen, H. Cui, L. Li, Z. Tian, and Z. Tang, “Controlling micro-phase separation
in semi-crystalline/amorphous conjugated block copolymers,” Polymer Chemistry 5,
4441–4445 (2014).
[31] B. Dong, T. Zhan, X. Liu, L. Jiang, F. Liu, X. Hu, and J. Zi, “Optical response of
a disordered bicontinuous macroporous structure in the longhorn beetle sphingnotus
mirabilis,” Physical Review E 84, 011915 (2011).
[32] J. Haberko and F. Scheffold, “Fabrication of mesoscale polymeric templates for threedimensional
disordered photonic materials,” Optics Express 21, 1057–1065 (2013).
[33] N. Muller, J. Haberko, C. Marichy, and F. Scheffold, “Silicon hyperuniform disordered
photonic materials with a pronounced gap in the shortwave infrared,” Advanced Optical
Materials 2, 115–119 (2014).
[34] P. Van de Witte, P. Dijkstra, J. Van den Berg, and J. Feijen, “Phase separation processes
in polymer solutions in relation to membrane formation,” Journal of Membrane Science
117, 1–31 (1996).
[35] N. Yan and Y. Wang, “Reversible switch between the nanoporous and the nonporous
state of amphiphilic block copolymer films regulated by selective swelling,” Soft Matter
11, 6927–6937 (2015).
[36] M. Svensson, P. Alexandridis, and P. Linse, “Phase behavior and microstructure in
binary block copolymer/selective solvent systems: Experiments and theory,” Macromolecules
32, 637–645 (1999).
[37] L. Zhang, H. Shen, and A. Eisenberg, “Phase separation behavior and crew-cut micelle
formation of polystyrene-b-poly (acrylic acid) copolymers in solutions,” Macromolecules
30, 1001–1011 (1997).
[38] B. H. Jones and T. P. Lodge, “Nanocasting nanoporous inorganic and organic materials
from polymeric bicontinuous microemulsion templates,” Polymer Journal 44, 131–146
(2012).
[39] T. F. Krauss, “Slow light in photonic crystal waveguides,” Journal of Physics D: Applied
Physics 40, 2666 (2007).
[40] M. Qian, X. Bao, L. Wang, X. Lu, J. Shao, and X. Chen, “Structural tailoring of
multilayer porous silicon for photonic crystal application,” Journal of Crystal Growth
292, 347–350 (2006).
[41] H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light
scattering of inhomogeneous and dynamic structures,” Physical Review Letters 101,
238102 (2008).
[42] D. Carolan, H. Chong, A. Ivankovic, A. Kinloch, and A. Taylor, “Co-continuous polymer
systems: A numerical investigation,” Computational Materials Science 98, 24–33
(2015).
[43] J. de R´ıo and S. Whitaker, “Maxwells equations in two-phase systems i: Local electrodynamic
equilibrium,” Transport in Porous Media 39, 159–186 (2000).
[44] K. S. Yee et al., “Numerical solution of initial boundary value problems involving
maxwells equations in isotropic media,” IEEE Transactions on Antennas and Propagation
14, 302–307 (1966).
[45] L. T. Yan and X. M. Xie, “Numerical simulation of substrate effects on spinodal decomposition
in polymer binary mixture: morphology and dynamics,” Polymer 46, 7684–
7694 (2005).
[46] D. Seol, S. Hu, Y. Li, J. Shen, K. Oh, and L. Chen, “Computer simulation of spinodal
decomposition in constrained films,” Acta Materialia 51, 5173–5185 (2003).
[47] A. Rajagopal, P. Fischer, E. Kuhl, and P. Steinmann, “Natural element analysis of the
cahn–hilliard phase-field model,” Computational Mechanics 46, 471–493 (2010).
[48] H. Esfandian, M. Shokravi, V. Garshasbi, H. Hosseinjanzadeh, and M. Ghiass, “A
numerical method for modeling of the effect of concentration gradient on the thermalinduced
phase separation phenomenon in polymer solutions,” Middle-East Journal of
Scientific Research 11, 1390–1396 (2012).
[49] M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous
thin films,” Thin Solid Films 496, 505–514 (2006).
[50] C. Pouya, J. T. Overvelde, M. Kolle, J. Aizenberg, K. Bertoldi, J. C. Weaver, and
P. Vukusic, “Characterization of a mechanically tunable gyroid photonic crystal inspired
by the butterfly parides sesostris,” Advanced Optical Materials 4, 99–105 (2016).
[51] S. Peng, R. Zhang, V. H. Chen, E. T. Khabiboulline, P. Braun, and H. A. Atwater,
“Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap,” ACS
Photonics (2016).
[52] C. Pouya and P. Vukusic, “Electromagnetic characterization of millimetre-scale replicas
of the gyroid photonic crystal found in the butterfly parides sesostris,” Interface Focus
2, 645–650 (2012).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *