帳號:guest(3.133.113.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂軒豪
作者(外文):Lu, Hsuan Hao
論文名稱(中文):全光學寡載波週期之超短脈衝互相關聲圖量測
論文名稱(外文):Toward all-optical sub-cycle visible-to-infrared pulse envelope measurement via cross-correlation sonogram
指導教授(中文):楊尚達
指導教授(外文):Yang, Shang Da
口試委員(中文):孔慶昌
籔下篤史
口試委員(外文):Andy Kung
Atsushi Yabushita
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066516
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:68
中文關鍵詞:超快雷射非線性光學脈衝量測
外文關鍵詞:Ultrafast LaserUltrafast MeasurementUltrafast Nonlinear Optics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:405
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這份論文中,我們提出一個新的量測技術:「互相關聲圖量測」,用來解析寬度短至單週期以下的超短脈衝的時域形狀。傳統的量測方法,例如「頻域分辨光學開關」和「頻譜干涉技術」大多受限於嚴重的群相速不匹配而須使用非常短的非線性晶體來進行量測。由於「互相關聲圖量測」將超寬的頻譜每次只擷取一部分出來和另一個已知的光學脈衝進行互相關強度量測,因此可以成功避開群相速不匹配的狀況,並得以使用較長的晶體來獲得更高的量測效率。
我們在模擬中成功利用100微米的硼酸鋇晶體解析一個從400奈米至980奈米的超連續光譜的相位,對應到時域上是寬度僅有2.3飛秒(0.88載波週期)的超短脈衝。在論文中我們也詳細討論了「互相關聲圖量測」中不同參數的選擇和其影響。我們認為這個方法相較於其他提出的脈衝量測技術有彈性,且量測的靈敏度更高。
Single-to-sub-cycle pulses in the visible-to-infrared region have strong potential to produce isolated attosecond burst, which can be used in observing the fleeting electronic dynamics. Though streaking technique is able to characterize the driving pulse with attosecond resolution, complex apparatus and extremely high laser intensity is required. All-optical techniques, such as frequency-resolved optical gating (FROG) or spectral shearing interferometry, are much more simplified and sensitive. However, they are severely restrained by the enormous group velocity mismatch in measuring sub-5 fs pulses. Sonogram techniques can be all-optical, but catch less attention than their FROG siblings due to the complexity of the experimental setup.

In this work, we propose a cross-correlation scheme to fully access the great potential of sonogram in single-to-sub-cycle pulse measurement. By using a synchronized reference pulse of duration to measure the temporal intensity of each filtered signal spectrum via intensity cross-correlation (IXC), the required phase-matching bandwidth in IXC can be greatly relaxed. Our simulations show accurate spectral phase retrieval of a multi-plate continuum (MPC) spectrum with temporal duration down to 2.3 fs (0.88 cycle) by using a 100-um-thick BBO crystal (too thick for any existing all-optical methods).
ACKNOWLEDGEMENTS i
ABSTRACT ii
摘要 iii
TABLE OF CONTENTS iv
TABLE OF CONTENTS OF FIGURES vi
LIST OF ABBREIVATIONS viii
1. INTRODUCTION 1
2. ULTRASHORT OPTICAL PULSE CHARACTERIZATIONS IN THE SINGLE-CYCLE REGIME 4
2.1 Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPIDER) 5
2.1.1. Modified SPIDER (M-SPIDER) 8
2.1.2. Two-dimensional spectral shearing interferometry (2DSI) 12
2.2 Frequency-Resolved Optical Gating (FROG) 16
2.2.1. Polarization-gating cross-correlation FROG (PGXFROG) 20
2.2.2. Four-wave mixing FROG in gas (FROG-CEP) 23
2.3 Attosecond Streaking Spectrogram 25
3. THEORETICAL AND SIMULATION STUDIES OF CONVENTIONAL SONOGRAM 28
3.1 Conventional Sonogram 29
3.2 Phase Retrieval Algorithm 34
3.3 Simulation Results 37
4. MODIFIED CROSS-CORRELATION SONOGRAM (M-XS) FOR SINGLE-CYCLE ULTRASHORT PULSE MEASUREMENT USING THICH NONLINEAR CRYSTAL 43
4.1 Implementation of M-XS 45
4.2 Pulse Shape Retrieval from Intensity Cross-Correlation 48
4.3 Normalized Sonogram 52
4.4 Simulation Results 54
4.5 Practical Issues: Slit Bandwidth and Crystal Thickness 57
5. CONCLUSION AND PERSPECTIVES 62
6. REFERENCES 65
[1] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, a. Pugzlys, a. Baltuska, B. Shim, S. E. Schrauth, a. Gaeta, C. Hernandez-Garcia, L. Plaja, a. Becker, a. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science (80-. )., vol. 336, no. 6086, pp. 1287–1291, 2012.
[2] F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys., vol. 81, no. 1, pp. 163–234, 2009.
[3] a. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, a. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. a. Alahmed, a. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized Light Transients,” Science (80-. )., vol. 334, no. 6053, pp. 195–200, 2011.
[4] E. Matsubara, K. Yamane, T. Sekikawa, and M. Yamashita, “[154] Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber,” J. Opt. Soc. Am. B, vol. 24, no. 4, p. 985, 2007.
[5] C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B Lasers Opt., vol. 79, no. 6, pp. 673–677, 2004.
[6] F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal.,” Nat. Commun., vol. 3, no. may, p. 807, 2012.
[7] C.-H. Lu, Y.-J. Tsou, and H.-Y. Chen, “Generation of intense supercontinuum in condensed media,” Optica, vol. 1, no. 6, pp. 400–406, 2014.
[8] a Baltuska, M. S. Pshenichnikov, and D. a Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating.,” Opt. Lett., vol. 23, no. 18, pp. 1474–1476, 1998.
[9] A. Baltuska, “Second-Harmonic Generation Frequency-Resolved Optical Gating in the Single-Cycle Regime,” IEEE J. Quantum Electron., vol. 35, no. 4, pp. 459–478, 1999.
[10] S. Akturk, C. D’Amico, and A. Mysyrowicz, “Measuring ultrashort pulses in the single-cycle regime using frequency-resolved optical gating,” J. Opt. Soc. Am. B, vol. 25, no. 6, pp. A63–A69, 2008.
[11] L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction.,” Opt. Lett., vol. 24, no. 18, pp. 1314–1316, 1999.
[12] E. Goulielmakis, V. S. Yakovlev, a L. Cavalieri, M. Uiberacker, V. Pervak, a Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond control and measurement: lightwave electronics.,” Science, vol. 317, no. 5839, pp. 769–775, 2007.
[13] S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics, vol. 5, no. 8, pp. 475–479, 2011.
[14] F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 14 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express, vol. 22, no. 9, p. 10181, 2014.
[15] V. Wong and I. a. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B, vol. 14, no. 4, p. 944, 1997.
[16] D. T. Reid and I. G. Cormack, “Single-shot sonogram: a real-time chirp monitor for ultrafast oscillators.,” Opt. Lett., vol. 27, no. 8, pp. 658–660, 2002.
[17] D. T. Reid and J. Garduno-Mejia, “General ultrafast pulse measurement using the cross-correlation single-shot sonogram technique.,” Opt. Lett., vol. 29, no. 6, pp. 644–646, 2004.
[18] J. Möhring, T. Buckup, and M. Motzkus, “Shaper-assisted full-phase characterization of UV pulses without a spectrometer.,” Opt. Lett., vol. 35, no. 23, pp. 3916–3918, 2010.
[19] D. Pestov, V. V. Lozovoy, and M. Dantus, “Single-beam shaper-based pulse characterization and compression using MIIPS sonogram,” Opt. Lett., vol. 35, no. 9, pp. 1422–4, 2010.
[20] C. Iaconis and I. a Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses.,” Opt. Lett., vol. 23, no. 10, pp. 792–794, 1998.
[21] I. a. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics, vol. 1, no. 2, p. 308, 2009.
[22] C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron., vol. 35, no. 4, pp. 501–509, 1999.
[23] J. R. Birge, H. M. Crespo, and F. X. Kärtner, “Theory and design of two-dimensional spectral shearing interferometry for few-cycle pulse measurement,” J. Opt. Soc. Am. B, vol. 27, no. 6, p. 1165, 2010.
[24] M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B Lasers Opt., vol. 74, no. SUPPL., pp. 225–229, 2002.
[25] K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation.,” Opt. Lett., vol. 28, no. 22, pp. 2258–2260, 2003.
[26] J. R. Birge and F. X. Kärtner, “Analysis and mitigation of systematic errors in spectral shearing interferometry of pulses approaching the single-cycle limit [Invited],” J. Opt. Soc. Am. B, vol. 25, no. 6, p. A111, 2008.
[27] S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, I. V Kabakova, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “Optical waveform synthesizer and its application to high-harmonic generation,” J. Phys. B At. Mol. Opt. Phys., vol. 45, no. 7, p. 074009, 2012.
[28] I. a. Walmsley, “Characterization of Ultrashort Optical Pulses in the Few-Cycle Regime Using Spectral Phase Interferometry for Direct Electric-Field Reconstruction,” Few-Cycle Laser Pulse Gener. Its Appl., vol. 292, pp. 265–292, 2004.
[29] K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photonics Technol. Lett., vol. 23, no. 16, pp. 1130–1132, 2011.
[30] K. W. Delong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections.,” Opt. Lett., vol. 19, no. 24, pp. 2152–2154, 1994.
[31] R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum., vol. 68, no. 9, pp. 3277–3295, 1997.
[32] X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett., vol. 27, no. 13, pp. 1174–1176, 2002.
[33] D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, “Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses,” Josa B, vol. 12, no. 10, p. 1955, 1995.
[34] K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B, vol. 11, no. 9, p. 1595, 1994.
[35] K. W. Delong, C. L. Ladera, R. Trebino, B. Kohler, and K. R. Wilson, “Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating.,” Opt. Lett., vol. 20, no. 5, pp. 486–488, 1995.
[36] R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, vol. 32, no. 7. 2007.
[37] R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses : frequency-resolved optical gating,” vol. 10, no. 5, 1993.
[38] T. Wong and R. Trebino, “Recent Developments in Experimental Techniques for Measuring Two Pulses Simultaneously,” Appl. Sci., vol. 3, no. 1, pp. 299–313, 2013.
[39] A. Weiner, Ultrafast Optics (Wiley Series in Pure and Applied Optics). 2009.
[40] T. C. Wong, M. Rhodes, and R. Trebino, “Single-shot measurement of the complete temporal intensity and phase of supercontinuum,” Optica, vol. 1, no. 2, p. 119, 2014.
[41] A. H. Kung, C.-H. Lu, and Y.-C. Cheng, “Intense Supercontinuum Generation in Condensed Media,” Nonlinear Opt., vol. 1, no. c, p. NTu1A.3, 2015.
[42] Y. Nomura, H. Shirai, and T. Fuji, “Frequency-resolved optical gating capable of carrier-envelope phase determination,” Nat. Commun., vol. 4, p. 2820, 2013.
[43] T. Fuji, Y. Nomura, and H. Shirai, “Generation and Characterization of Phase-Stable Sub-Single-Cycle Pulses at 3000 cm^-1,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 5, p. 8700612, 2015.
[44] H. Shirai, Y. Nomura, and T. Fuji, “Real-Time Waveform Characterization by Using Frequency-Resolved Optical Gating Capable of Carrier-Envelope Phase Determination,” IEEE Photonics J., vol. 6, no. 3, pp. 1–12, 2014.
[45] F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics, vol. 8, no. 3, pp. 205–213, 2014.
[46] M. T. Hassan, A. Wirth, I. Grgura??, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: Attosecond photonics: Synthesis and control of light transients,” Rev. Sci. Instrum., vol. 83, no. 11, 2012.
[47] M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature, vol. 530, no. 7588, pp. 66–70, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *