帳號:guest(3.143.203.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝佳倩
作者(外文):Hsieh, Chia Chien
論文名稱(中文):具濾波功能之近紅外光鍺光偵測器
論文名稱(外文):Wavelength Filtering Near-infrared Ge Photodetectors
指導教授(中文):李明昌
指導教授(外文):Lee, Ming Chang
口試委員(中文):徐碩鴻
王立康
口試委員(外文):Hsu, Shuo Hung
Wang, Likarn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066515
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:濾波器光偵測器
外文關鍵詞:FilterGePhotodector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:380
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本研究中,利用波導模態共振的理論結合金屬光柵,該金屬光柵能夠選擇性地將垂直入射光耦合到波導層,用於增強特定波長之光穿透至鍺層,同時藉由調整金屬光柵週期便能達到濾波效果,且該光學元件設計於近紅外光波段,濾波範圍涵蓋1220nm~1500nm。我們成功將其製作在鍺光偵測器上,僅需測得光訊號便能作出不同波長的選擇性偵測,達到光電整合之目的。在週期設計840nm與860nm分別相對於共振波長1315nm與1350nm其半高寬皆小於15nm。
In the thesis, we propose a new device structure using waveguide metallic photonic crystals monolithically integrated on a Ge photodiodes to implement a wavelength selective NIR photodetector. This metallic nanoplasmonic grating is capable of selectively coupling normally incident light to the waveguide layer for enhancing light transmission to the bottom Ge photodiodes at a specific wavelength, which can be controlled by the grating period. Without changing the thickness of device layers, this structure can be utilized for implementing an on-chip spectrometer. The grating period is designed from 750 nm to 950 nm, and the wavelength shift from 1.22 μm to 1.5 μm. The FWHM of the transmission band is less than 30 nm. By measuring the responsivity, we have successfully demonstrated devices at grating period 840nm and 860nm, corresponding to the resonance wavelength at 1315nm and 1350nm respectively.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 文章架構 4
第二章 理論背景 5
2.1 鍺材料應用於紅外光通訊元件 5
2.2 光偵測器介紹 7
2.2.1 PIN光偵測器工作原理 8
2.2.2特性參數 10
2.3 光柵繞射異常現象 13
2.3.1表面電漿共振 14
2.3.2波導模態共振 17
2.3.3波導耦合金屬光子晶體 18
第三章 實驗模擬與元件設計 19
3.1 時域有限差分法(FDTD) 19
3.2 材料選擇與模擬最佳化參數 25
第四章 元件製作 29
4.1 元件製作流程圖 29
4.2 磊晶法製備鍺薄膜 30
4.3 離子佈植 32
4.4 鎳化鍺接觸面 35
4.5 製備光學結構層 37
4.5.1波導層薄膜沉積 37
4.5.2鋁金屬光柵製程 38
4.6 金屬線連接 44
第五章 量測結果與分析 45
5.1 元件成品 45
5.2 元件光學頻譜量測 46
5.3 元件電性量測 49
5.4 特性分析 56
第六章 結論與未來展望 57
6.1 結論與未來展望 57
6.2 改善 58

[1] M. T. Bohr, “Interconnect Scaling - The Real Limiter to High Performance ULSI,” IEEE Int. Electron Devices Meeting 241-244 (1995).
[2] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, “On-Chip Optical Interconnect,” Proc. IEEE 97, 1186-1198 (2009).
[3] Xiaochen Sun, “Ge-on-Si Light-Emitting Materials and Devices for Silicon Phoonics,” B.S. Physics, Peking University, (2004)
[4] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications,” IEEE Int. Electron Devices Meeting 33.8 (2012).
[5] Edward D,“Handbook of optical Constants of solids,” Academic press NY, Palik (1985)
[6] Xi Luo, “Transistor-Based Ge/SOI Photodetector for Integrated Silicon Photonics,” Electrical Engineering and Computer Sciences University of California at Berkeley, (2011) .
[7] 田仲達,“利用自我對準微接合技術製作矽鍺異質接面波導光偵測器,”國立清華大學光電工程研究所(民國101年)
[8] 黃鐘億,“具有低溫成長氮化鎵/氮化鋁插入層之氮化鎵光偵測器光電特性比較之研究,”國立成功大學光電科學與工程研究所(民國96年)
[9] R. W. Wood, “Remarkable spectrum from a diffraction grating,” Philos. Mag., vol. 4 , pp. 396-402, (1902).
[10] Hessel, and A. A. Oliner, “A new theory of Wood’ s anomalies on optical gratings,” Appl. Opt., vol. 10, pp. 1275-1296, (1965).
[11] 賴國瑋,“波導模態共振之元件應用,”國立交通大學電子工程學系電子研究所(民國100年)
[12] D.Shin, “Resonance properties of periodic waveguides and their applications,”Ph.D. dissertation, the Universatity of Texas at Arlington, (1999).
[13] Sharon,D.Rosenblatt, and A.A. Friesem,“Resonant grating-waveguide structures for visible and near-infared radiation,”J.Opt.Soc.Am.A, vol.14,2985, (1997).
[14] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 08/14/print, (2003).
[15] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, (2004).
[16] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968, (1968).
[17] 張家齊,“單石化平面光波光路之導波模態 共振濾波器,” 國立中央大學(民國97年)
[18] Zhang, Xinping; Feng, Shengfei; Zhang, Jian; Zhai, Tianrui; Liu, Hongmei; Pang, Zhaoguang. "Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals."Sensors 12, no. 9: 12082-12097, (2012).
[19] Feng, S. "Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals." Journal of Nanophotonics 6(1): 063513, (2012).
[20] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag, vol. 14, pp. 302-307, (1966).
[21] J.-N. Hwang and F.-C. Chen, "Effect of the conductivity profile on the stability of the ADI-FDTD method with split-field PML," Asia-Pacific Microwave Conference pp. 945-948, (2006),.
[22] J.-P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Transactions on Antennas and Propagation, vol. 44, pp. 110-117, (1996).
[23] Kaplan, A. F., et al. "High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography." Applied Physics Letters 99(14): 143111, (2011).
[24] 施哲儒,“鎳鍺化物接觸之N + -P鍺淺接面及接觸電阻之研究,”國立交通大學電子工程學系電子研究所(民國102年)

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *