帳號:guest(3.144.237.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):連旭昇
作者(外文):Lien, Hsu Sheng
論文名稱(中文):利用硼離子佈植與磷擴散製作N型太陽能電池
論文名稱(外文):Fabrication of N-Type Solar Cells by Boron Ion Implant and Phosphorus Diffusion
指導教授(中文):王立康
指導教授(外文):Wang, Li Karn
口試委員(中文):陳昇暉
張正陽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066511
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:N型太陽能電池擴散離子佈植
外文關鍵詞:N-type solar celldiffusionion implant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:697
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
太陽能電池的發展,一直都是追求效率的提升,或是成本的下降。利用N型矽基板製作的太陽能電池對金屬雜質的容忍度較P型矽基板高,也不會有光致衰減等問題,對於相同的製作成本,N型太陽能電池有機會製作出較高的光電轉換效率。本篇將利用硼離子佈植進行摻雜,摻雜後還需要退火,用來活化硼和修復晶格損傷。因此對於硼摻雜以及退火的最佳條件,將利用少數載子生命週期和片電阻來尋找。P型太陽能電池都會沉積一層抗反射層,增加對光的吸收,因此對於最佳抗反射層的厚度,將利用對光的反射率進行尋找。燒結是製作太陽能電池的最後一步,燒結的最佳條件則是利用填充因子來做判斷。最後,將這些最佳條件再運用到製程上,製作出N型太陽能電池。
In the development of solar cells, it is the mainstream to look for a method of raising conversion efficiency or cost down. Compared with P-type solar cells, N-type solar cells have no light-induced degradation and have higher tolerance in metal impurity. At the same production costs, N-type solar cells have the potential to be produced with higher conversion efficiency. In this thesis, we use an ion implantation to dope boron into samples. After the ion implantation process, we use annealing to activate boron and repair lattice damage. We find the parameters of boron ion implantation and annealing to obtain the optimal minority carrier lifetime and sheet resistance. In the fabrication of P-type solar cells, it is common to deposit anti-reflection layer to enhance absorption of light. We find the best thickness of anti-reflection layer to achieve low reflectivity. Finally, we find the best co-firing condition to obtain the best fill factor. Then, we fabricate our N-type solar cells in accordance with these best parameters.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 簡介 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究動機與目的 6
1.4 論文架構 7
第二章 原理 8
2.1 半導體物理 8
2.1.1 材料的分類 8
2.1.2 能帶理論 10
2.1.3 P型半導體與N型半導體 12
2.1.4 PN-JUNCTION 13
2.1.5 順偏與逆偏 14
2.1.6 電子電洞的產生與復合 15
2.2 太陽能電池原理 17
2.2.1 太陽光簡介 17
2.2.2 太陽能電池發電原理 18
2.2.3 太陽能電池等效電路 19
2.2.4 太陽能電池參數 22
2.2.5 太陽能電池效率損失 23
2.3 離子佈植 24
2.4 背表面場 25
第三章 實驗方法 26
3.1 實驗目的 26
3.2 儀器介紹 26
3.3 實驗步驟 31
RCA Clean 32
表面粗糙化 33
硼離子佈植 33
熱退火 35
沉積二氧化矽 36
磷擴散 36
磷玻璃去除 37
SiNx抗反射層沉積 37
網印電極 38
電極共燒 39
邊緣隔絕 39
第四章 實驗結果與討論 40
4.1 硼離子佈植的最佳化參數 40
4.1.1 生命週期討論 42
4.1.2 片電阻討論 45
4.1.3 SIMS 46
4.1.4 最佳抗反射層厚度 48
4.1.5 燒結溫度 50
第五章 總結 52
參考資料 54

[1] A. E. Becquerel, "Mémoire sur les effets électriques produits sous l’influence des rayons solaires," Comptes Rendus de l'Académie des Sciences, Vol. 9, pp. 561-567, 1839.
[2] A. E. Becquerel, "Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques," Comptes Rendus de lÁcademie des sciences, vol. 9, pp. 145-149, 1839.
[3] A. B. Arons and M. B. Peppard, "Einstein’s Proposal of the Photon Concept-a Translation of the Annalen der Physik Paper of 1905," American Journal of Physics, vol. 33, pp. 367-374, 1965.
[4] C. E. Fritts, "On the Fritts selenium cells and batteries," Journal of the Franklin Institute, vol. 119, pp. 221-232, 1885.
[5] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[6] M. Hiroshi, "Radiation energy transducing device," U.S. patent no. 3 278 811, October 11, 1966.
[7] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, "22.8% efficient silicon solar cell," Applied Physics Letters, vol. 55, pp. 1363-1365, 1989.
[8] A. Wang, J. Zhao, and M. A. Green, "24% efficient silicon solar cells," Applied physics letters, vol. 57, pp. 602-604, 1990.
[9] J. Zhao, A. Wang, and M. A. Green, "24• 5% Efficiency silicon PERT cells on MCZ substrates and 24• 7% efficiency PERL cells on FZ substrates," Progress in Photovoltaics: Research and Applications, vol. 7, pp. 471-474, 1999.
[10] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, et al., "More than 16% solar cells with a newHIT (doped a-Si/nondoped a-Si/crystalline Si) structure," in Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, pp. 887-892, 1991.
[11] W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. De Ceuster, K. R. McIntosh, D. D. Smith, et al., "Manufacture of solar cells with 21% efficiency," in Proceedings of the 19th European Photovoltaic Solar Energy Conference, vol. 387, 2004.
[12] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, "Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation," Applied Physics Letters, vol. 68, pp. 1232-1234, 1996.
[13] B. Hoex, J. J. H. Gielis, M. C. M. Van de Sanden, and W. M. M. Kessels, "On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3," Journal of Applied Physics, vol. 104, p. 113703, 2008.

[14] B. Sopori, P. Basnyat, S. Devayajanam, S. Shet, V. Mehta, J. Binns, et al., "Understanding light-induced degradation of c-Si solar cells," in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 001115-001120, 2012.
[15] D. Macdonald and L. J. Geerligs, "Recombination activity of interstitial iron and other transition metal point defects in p-and n-type crystalline silicon," Applied Physics Letters, vol. 85, p. 4061, 2004.
[16] R. Kopecek and J. Libal, "The status and future of industrial n-type silicon solar cells," Photovoltaics International, pp. 1-7, 2013.
[17] A. Lanterne, J. Le Perchec, S. Gall, S. Manuel, M. Coig, A. Tauzin, et al., "Understanding of the annealing temperature impact on ion implanted bifacial n‐type solar cells to reach 20.3% efficiency," Progress in Photovoltaics: Research and Applications, vol. 23, pp. 1458-1465, 2015.
[18] B. J. Pawlak, T. Janssens, S. Singh, I. Kuzma‐Filipek, J. Robbelein, N. E. Posthuma, et al., "Studies of implanted boron emitters for solar cell applications," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 106-110, 2012.
[19] J. Schrof, R. Müller, R. C. Reedy, J. Benick, and M. Hermle, "Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells," Journal of Applied Physics, vol. 118, p. 045702, 2015.

[20] A. Lanterne, S. Gall, Y. Veschetti, R. Cabal, M. Coig, F. Milési, et al., "High efficiency fully implanted and co-annealed bifacial n-type solar cells," Energy Procedia, vol. 38, pp. 283-288, 2013.
[21] R. Müller, J. Benick, N. Bateman, J. Schön, C. Reichel, A. Richter, et al., "Evaluation of implantation annealing for highly-doped selective boron emitters suitable for screen-printed contacts," Solar Energy Materials and Solar Cells, vol. 120, pp. 431-435, 2014.
[22] H. Boo, J.-H. Lee, M. G. Kang, K. Lee, S. Kim, H. C. Hwang, et al., "Effect of high-temperature annealing on ion-implanted silicon solar cells," International Journal of Photoenergy, vol. 2012, 2012.
[23] P. Rothhardt, C. Demberger, A. Wolf, and D. Biro, "Co-diffusion from APCVD BSG and POCl 3 for Industrial n-type Solar Cells," Energy Procedia, vol. 38, pp. 305-311, 2013.
[24] K. Ryu, A. Upadhyaya, Y.-W. Ok, H. Xu, L. Metin, and A. Rohatgi, "High efficiency n-type solar cells with screen-printed boron emitters and ion-implanted back surface field," in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 002247-002249, 2012.
[25] X. Yang, R. Müller, A. Shalav, L. Xu, W. Liang, R. Zhang, et al., "Boron implanted, laser annealed p+ emitter for n-type interdigitated back-contact solar cells," Energy Procedia, vol. 55, pp. 320-325, 2014.

[26] F. Kiefer, R. Peibst, T. Ohrdes, T. Dullweber, J. Krügener, H. J. Osten, et al., "Influence of the boron emitter profile on VOC and JSC losses in fully ion implanted n‐type PERT solar cells," Physica Status Solidi (a), vol. 212, pp. 291-297, 2015.
[27] Z. Zhao, N. D. Theodore, R. N. P. Vemuri, S. Das, W. Lu, S. S. Lau, et al., "Effective dopant activation via low temperature microwave annealing of ion implanted silicon," Applied Physics Letters, vol. 103, p. 192103, 2013.
[28] http://www.nrel.gov/ncpv/
[29] https://en.wiki2.org/wiki/Photovoltaics
[30] 翁敏航, 太陽能電池 : 原理、元件、材料、製程與檢測技術, 初版, 臺北市: 臺灣東華, 2010.
[31] D.A. Neamen, Semiconductor Physics and devices: Basic Principles, 4th Edition, US:Mc Graw Hill, 2012
[32] https://climatesanity.files.wordpress.com/2011/04/spectrum-overlay-2.png
[33] R. Woehl, J. Krause, F. Granek, and D. Biro, "19.7% efficient all-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter," IEEE Electron Device Letters, vol. 32, pp. 345-347, 2011.
[34] J. G. Fossum, E. L. Burgess, and F. A. Lindholm, "Silicon solar cell designs based on physical behavior in concentrated sunlight," Solid-State Electronics, vol. 21, pp. 729-737, 1978.
[35] http://images.caeonline.com/im.php?id=346859
[36] http://www.ndl.narl.org.tw/docs/devices/CF/T19_A.pdf
[37] http://oplab.ipt.nthu.edu.tw/main/node/32
[38] http://images.caeonline.com/im.php?id=406783
[39] http://www.forter.com.tw/products_detail.asp?seq=523
[40] http://www.sintoninstruments.com/images/product-photo-WCT-120-main-WM-v2.jpg
[41] M. A. Green, 曹昭陽, 狄大衛, and 李秀文, 太陽電池工作原理、技術與系統應用, 初版, 台北市: 五南, 2009.
[42] J. F. Gibbons, "Ion implantation in semiconductors—Part II: Damage production and annealing," Proceedings of the IEEE, vol. 60, pp. 1062-1096, 1972.
[43] J. Liu, V. Krishnamoorthy, H.-J. Gossman, L. Rubin, M. E. Law, and K. S. Jones, "The effect of boron implant energy on transient enhanced diffusion in silicon," Journal of Applied Physics, vol. 81, pp. 1656-1660, 1997.
[44] M. Miyake and S. Aoyama, "Transient enhanced diffusion of ion‐implanted boron in Si during rapid thermal annealing," Journal of Applied Physics, vol. 63, pp. 1754-1757, 1988.
[45] A. Krawicz, D. Cedeno, and G. F. Moore, "Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination," Physical Chemistry Chemical Physics, vol. 16, pp. 15818-15824, 2014.

[46] A. Frey, J. Engelhardt, S. Fritz, G. Hahn, B. Terheiden, and S. Gloger, n-type bi-facial solar cells with boron emitters from doped PECVD layers, WIP, 2014.
[47] 曹天相, "背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:初步研究," 碩士, 光電工程研究所, 國立清華大學, 新竹市, 2015.
[48] C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, et al., "Low temperature surface passivation for silicon solar cells," Solar Energy Materials and Solar Cells, vol. 40, pp. 297-345, 1996.
[49] B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Van de Sanden, and W. M. M. Kessels, "Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3," Applied Physics Letters, vol. 91, p. 112107, 2007.
[50] J. P. Singh, T. M. Walsh, and A. G. Aberle, "A new method to characterize bifacial solar cells," Progress in Photovoltaics: Research and Applications, vol. 22, pp. 903-909, 2014.
[51] K. Ryu, A. Upadhyaya, V. Upadhyaya, A. Rohatgi, and Y. W. Ok, "High efficiency large area n‐type front junction silicon solar cells with boron emitter formed by screen printing technology," Progress in Photovoltaics: Research and Applications, vol. 23, pp. 119-123, 2015.
[52] J. Le Perchec, A. Lanterne, M. Coig, S. Manuel, V. Sanzone, S. Gall, et al., "High efficiency n-type bifacial solar cells by implantation of boron, phosphorous or arsenic ions," European Photovoltaic Solar Energy Conference and Exhibition, vol. 1, pp.689-692, 2014
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *