|
[1] A. E. Becquerel, "Mémoire sur les effets électriques produits sous l’influence des rayons solaires," Comptes Rendus de l'Académie des Sciences, Vol. 9, pp. 561-567, 1839. [2] A. E. Becquerel, "Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques," Comptes Rendus de lÁcademie des sciences, vol. 9, pp. 145-149, 1839. [3] A. B. Arons and M. B. Peppard, "Einstein’s Proposal of the Photon Concept-a Translation of the Annalen der Physik Paper of 1905," American Journal of Physics, vol. 33, pp. 367-374, 1965. [4] C. E. Fritts, "On the Fritts selenium cells and batteries," Journal of the Franklin Institute, vol. 119, pp. 221-232, 1885. [5] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954. [6] M. Hiroshi, "Radiation energy transducing device," U.S. patent no. 3 278 811, October 11, 1966. [7] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, "22.8% efficient silicon solar cell," Applied Physics Letters, vol. 55, pp. 1363-1365, 1989. [8] A. Wang, J. Zhao, and M. A. Green, "24% efficient silicon solar cells," Applied physics letters, vol. 57, pp. 602-604, 1990. [9] J. Zhao, A. Wang, and M. A. Green, "24• 5% Efficiency silicon PERT cells on MCZ substrates and 24• 7% efficiency PERL cells on FZ substrates," Progress in Photovoltaics: Research and Applications, vol. 7, pp. 471-474, 1999. [10] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, et al., "More than 16% solar cells with a newHIT (doped a-Si/nondoped a-Si/crystalline Si) structure," in Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, pp. 887-892, 1991. [11] W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. De Ceuster, K. R. McIntosh, D. D. Smith, et al., "Manufacture of solar cells with 21% efficiency," in Proceedings of the 19th European Photovoltaic Solar Energy Conference, vol. 387, 2004. [12] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, "Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation," Applied Physics Letters, vol. 68, pp. 1232-1234, 1996. [13] B. Hoex, J. J. H. Gielis, M. C. M. Van de Sanden, and W. M. M. Kessels, "On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3," Journal of Applied Physics, vol. 104, p. 113703, 2008.
[14] B. Sopori, P. Basnyat, S. Devayajanam, S. Shet, V. Mehta, J. Binns, et al., "Understanding light-induced degradation of c-Si solar cells," in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 001115-001120, 2012. [15] D. Macdonald and L. J. Geerligs, "Recombination activity of interstitial iron and other transition metal point defects in p-and n-type crystalline silicon," Applied Physics Letters, vol. 85, p. 4061, 2004. [16] R. Kopecek and J. Libal, "The status and future of industrial n-type silicon solar cells," Photovoltaics International, pp. 1-7, 2013. [17] A. Lanterne, J. Le Perchec, S. Gall, S. Manuel, M. Coig, A. Tauzin, et al., "Understanding of the annealing temperature impact on ion implanted bifacial n‐type solar cells to reach 20.3% efficiency," Progress in Photovoltaics: Research and Applications, vol. 23, pp. 1458-1465, 2015. [18] B. J. Pawlak, T. Janssens, S. Singh, I. Kuzma‐Filipek, J. Robbelein, N. E. Posthuma, et al., "Studies of implanted boron emitters for solar cell applications," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 106-110, 2012. [19] J. Schrof, R. Müller, R. C. Reedy, J. Benick, and M. Hermle, "Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells," Journal of Applied Physics, vol. 118, p. 045702, 2015.
[20] A. Lanterne, S. Gall, Y. Veschetti, R. Cabal, M. Coig, F. Milési, et al., "High efficiency fully implanted and co-annealed bifacial n-type solar cells," Energy Procedia, vol. 38, pp. 283-288, 2013. [21] R. Müller, J. Benick, N. Bateman, J. Schön, C. Reichel, A. Richter, et al., "Evaluation of implantation annealing for highly-doped selective boron emitters suitable for screen-printed contacts," Solar Energy Materials and Solar Cells, vol. 120, pp. 431-435, 2014. [22] H. Boo, J.-H. Lee, M. G. Kang, K. Lee, S. Kim, H. C. Hwang, et al., "Effect of high-temperature annealing on ion-implanted silicon solar cells," International Journal of Photoenergy, vol. 2012, 2012. [23] P. Rothhardt, C. Demberger, A. Wolf, and D. Biro, "Co-diffusion from APCVD BSG and POCl 3 for Industrial n-type Solar Cells," Energy Procedia, vol. 38, pp. 305-311, 2013. [24] K. Ryu, A. Upadhyaya, Y.-W. Ok, H. Xu, L. Metin, and A. Rohatgi, "High efficiency n-type solar cells with screen-printed boron emitters and ion-implanted back surface field," in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 002247-002249, 2012. [25] X. Yang, R. Müller, A. Shalav, L. Xu, W. Liang, R. Zhang, et al., "Boron implanted, laser annealed p+ emitter for n-type interdigitated back-contact solar cells," Energy Procedia, vol. 55, pp. 320-325, 2014.
[26] F. Kiefer, R. Peibst, T. Ohrdes, T. Dullweber, J. Krügener, H. J. Osten, et al., "Influence of the boron emitter profile on VOC and JSC losses in fully ion implanted n‐type PERT solar cells," Physica Status Solidi (a), vol. 212, pp. 291-297, 2015. [27] Z. Zhao, N. D. Theodore, R. N. P. Vemuri, S. Das, W. Lu, S. S. Lau, et al., "Effective dopant activation via low temperature microwave annealing of ion implanted silicon," Applied Physics Letters, vol. 103, p. 192103, 2013. [28] http://www.nrel.gov/ncpv/ [29] https://en.wiki2.org/wiki/Photovoltaics [30] 翁敏航, 太陽能電池 : 原理、元件、材料、製程與檢測技術, 初版, 臺北市: 臺灣東華, 2010. [31] D.A. Neamen, Semiconductor Physics and devices: Basic Principles, 4th Edition, US:Mc Graw Hill, 2012 [32] https://climatesanity.files.wordpress.com/2011/04/spectrum-overlay-2.png [33] R. Woehl, J. Krause, F. Granek, and D. Biro, "19.7% efficient all-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter," IEEE Electron Device Letters, vol. 32, pp. 345-347, 2011. [34] J. G. Fossum, E. L. Burgess, and F. A. Lindholm, "Silicon solar cell designs based on physical behavior in concentrated sunlight," Solid-State Electronics, vol. 21, pp. 729-737, 1978. [35] http://images.caeonline.com/im.php?id=346859 [36] http://www.ndl.narl.org.tw/docs/devices/CF/T19_A.pdf [37] http://oplab.ipt.nthu.edu.tw/main/node/32 [38] http://images.caeonline.com/im.php?id=406783 [39] http://www.forter.com.tw/products_detail.asp?seq=523 [40] http://www.sintoninstruments.com/images/product-photo-WCT-120-main-WM-v2.jpg [41] M. A. Green, 曹昭陽, 狄大衛, and 李秀文, 太陽電池工作原理、技術與系統應用, 初版, 台北市: 五南, 2009. [42] J. F. Gibbons, "Ion implantation in semiconductors—Part II: Damage production and annealing," Proceedings of the IEEE, vol. 60, pp. 1062-1096, 1972. [43] J. Liu, V. Krishnamoorthy, H.-J. Gossman, L. Rubin, M. E. Law, and K. S. Jones, "The effect of boron implant energy on transient enhanced diffusion in silicon," Journal of Applied Physics, vol. 81, pp. 1656-1660, 1997. [44] M. Miyake and S. Aoyama, "Transient enhanced diffusion of ion‐implanted boron in Si during rapid thermal annealing," Journal of Applied Physics, vol. 63, pp. 1754-1757, 1988. [45] A. Krawicz, D. Cedeno, and G. F. Moore, "Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination," Physical Chemistry Chemical Physics, vol. 16, pp. 15818-15824, 2014.
[46] A. Frey, J. Engelhardt, S. Fritz, G. Hahn, B. Terheiden, and S. Gloger, n-type bi-facial solar cells with boron emitters from doped PECVD layers, WIP, 2014. [47] 曹天相, "背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作:初步研究," 碩士, 光電工程研究所, 國立清華大學, 新竹市, 2015. [48] C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, et al., "Low temperature surface passivation for silicon solar cells," Solar Energy Materials and Solar Cells, vol. 40, pp. 297-345, 1996. [49] B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Van de Sanden, and W. M. M. Kessels, "Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3," Applied Physics Letters, vol. 91, p. 112107, 2007. [50] J. P. Singh, T. M. Walsh, and A. G. Aberle, "A new method to characterize bifacial solar cells," Progress in Photovoltaics: Research and Applications, vol. 22, pp. 903-909, 2014. [51] K. Ryu, A. Upadhyaya, V. Upadhyaya, A. Rohatgi, and Y. W. Ok, "High efficiency large area n‐type front junction silicon solar cells with boron emitter formed by screen printing technology," Progress in Photovoltaics: Research and Applications, vol. 23, pp. 119-123, 2015. [52] J. Le Perchec, A. Lanterne, M. Coig, S. Manuel, V. Sanzone, S. Gall, et al., "High efficiency n-type bifacial solar cells by implantation of boron, phosphorous or arsenic ions," European Photovoltaic Solar Energy Conference and Exhibition, vol. 1, pp.689-692, 2014
|