帳號:guest(18.219.140.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉幸娟
作者(外文):Liu, Shing Jiuan
論文名稱(中文):基於無偏振態追蹤PDM AM-DDO-OFDM下傳和偏振態無感上傳之光載中頻行動網路前段
論文名稱(外文):An IFoF mobile fronthaul with polarization tracking free PDM AM-DDO-OFDM downstream and polarization insensitive upstream
指導教授(中文):馮開明
指導教授(外文):Feng, Kai Ming
口試委員(中文):林炆標
彭朋群
口試委員(外文):Lin, Wen Piao
Peng, Peng Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066501
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:59
中文關鍵詞:偏振態多工光纖載中頻訊號正交分頻多工可調性調變無線電接取網路
外文關鍵詞:polarization division multiplexingintermediate frequency over fibermobile fronthaulorthogonal frequency division multiplexingadaptive modulationradio access unit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:473
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
我們提出並以實驗呈現基於多頻帶直接檢測光學正交分頻多工(DDO-OFDM)系統,傳送可調性調變(AM)偏振態多工(PDM)光纖載中頻訊號(IFOF),達到免偏振態追蹤的下傳系統及偏振態無感的OOK上傳系統。由於不需追加偏振態追蹤的機制,因此每一個無線接取單元(RAU)的設備簡單化,整個無線接取單元也更具有經濟效應及低功率損耗。另外,結合了集中式無線電接取網路(C-RAN)的架構,建立了一個靈活度高和複雜度集中之行動網路前段,這將有希望成為下一代行動通訊網路的參考指標。
在下傳系統當中,只需在每一個接收端設置一個簡單光學濾波器,就可以成功地解調相對應的偏振態多工及多頻帶訊號。我們以實驗實際呈現頻寬為3.5GHz且載有大約50GHz資訊量的可調性調變多頻帶OFDM訊號,並傳送於25km單模光纖中。由於使用偏振態多工的技術頻譜效應倍增,以可調性調變技術使傳送資訊量再增加8Gb/s。另外,此系統還提供4dB power margin,能更進一步支持無線通訊的服務[1]。對於上傳系統直接再利用兩正交偏振態載波,再不追加濾波器或是偏振態控制器的狀況下,能成功地使用對偏振態靈敏的MZM光學調變器達到偏振態無感的效果。由結果顯示,與傳送對齊晶體光軸的單偏振態訊號相比,大約有1.8dB功率損耗。整體而言,偏振態追蹤的技術不必使用,因此建立了真正的無偏振態追蹤的網路前段系統。
We propose and experimentally demonstrate a polarization-tracking-free polarization division multiplexing (PDM) intermediate frequency over fiber (IFoF) based on multiband direct detection optical orthogonal frequency division multiplexing (DDO-OFDM) with adaptive modulation (AM) technique downstream, as well as polarization insensitive on-off-keying upstream. The polarization tracking mechanism is eliminated, hence the complicated cell sites are simplified and letting more cost-effective and power-efficient for every radio access unit (RAU). Moreover, under the C-RAN architecture the mobile fronthual is thus establish with high spectra flexibility and complexity centralized which will be a promising selection for next generation mobile communication.
In the downstream system, only a simple optical filter at each receiver can passively demultiplex the corresponding signal band in both PDM scheme and multiband scheme. An adaptively modulated multiband OFDM signals with 3.5-GHz bandwidth, 50-Gb/s transmission 25-km single mode fiber is experimentally demonstrated. A spectral efficiency is doubled with applied PDM technique and data capacity is 8-Gb/s increased compare with employing AM or not. Furthermore, it provides 4 dB power margins, where may support wireless transmissions[1]. In the upstream generation, the polarization insensitive is implemented for using MZM by directly reuse the two orthogonal carriers without additional filtering or polarization controlling. The results show a 1.8dB power penalty with respect to those with traditional best polarization aligned mechanism, which can be negligible. The polarization tracking mechanisms are out of consideration and establish a true polarization tracking free mobile fronthaul system.
第1章 緒論 1
1.1 前言 1
1.2 研究目的與動機 3
1.3 論文架構 6
第2章 可調性調變於直接偵測光學正交分頻多工系統 7
2.1 正交分頻多工系統 7
2.1.1 分頻多工與正交分頻多工 7
2.1.2 正交分頻多工系統調變與解調原理 9
2.2 電-光調變器 (Electro-optical modulator) 11
2.2.1 馬赫-詹德的調變器(Mach-Zehnder Modulator ,MZM) 12
2.3 直接偵測光學正交分頻多工(DDO-OFDM)系統架構 15
2.4 可調性調變系統 (Adaptive modulation) 18
2.4.1 可調性演算法 (Adaptive Algorithm) 19
第3章 無偏振態追蹤PDM 多頻帶 IFoF AM-DDO-OFDM下 22
3.1 光纖載中頻訊號(Intermediate frequency over fiber, IFoF)/光纖載射頻訊號(Radio frequency over fiber, RFoF) 22
3.2 偏振態多工 (Polarization Division Multiplexing, PDM) 23
3.3 多頻帶直接偵測OFDM 系統 26
3.4 無偏振態追蹤PDM Multiband OFDM下傳的機制 28
3.5 偏振態無感的上傳機制 30
第4章 實驗架構及結果 32
4.1 下傳行動網路前段 33
4.1.1 實驗架構 33
4.1.2 實驗結果 37
4.2 上傳行動網路前段 49
4.2.1 實驗架構 49
4.2.2 實驗結果 53
第5章 結論 55
參考文獻 56
[1] L. Zhou and N. Cheng, "Cost Effective Self-Seeded WDM Mobile Fronthaul with Adaptive Crosstalk Cancellation and Bit Loading OFDM," in Asia Communications and Photonics Conference 2015, Hong Kong, 2015, p. ASu3E.1.
[2] J. Medbo, K. Börner, K. Haneda, V. Hovinen, et al., "Channel modelling for the fifth generation mobile communications," in The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2014, pp. 219-223.
[3] T. Pfeiffer, "Next Generation Mobile Fronthaul and Midhaul Architectures [Invited]," Journal of Optical Communications and Networking, vol. 7, pp. B38-B45, 2015.
[4] S.-H. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, "Experimental Demonstrations of Next Generation Cost-Effective Mobile Fronthaul with IFoF technique," in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. M2J.5.
[5] X. Steve Yao, L. S. Yan, B. Zhang, A. E. Willner, and J. Jiang, "All-optic scheme for automatic polarization division demultiplexing," Optics Express, vol. 15, pp. 7407-7414, 2007.
[6] C.-C. Wei, C.-T. Lin, and C.-Y. Wang, "PMD tolerant direct-detection polarization division multiplexed OFDM systems with MIMO processing," Optics Express, vol. 20, pp. 7316-7322, 2012.
[7] D. Qian, N. Cvijetic, J. Hu, and T. Wang, "108 Gb/s OFDMA-PON With Polarization Multiplexing and Direct Detection," Journal of Lightwave Technology, vol. 28, pp. 484-493, 2010.
[8] H.-T. Huang, C.-S. Sun, C.-T. Lin, C.-C. Wei, W.-S. Zeng, H.-Y. Chang, et al., "Direct-Detection PDM-OFDM RoF System for 60-GHz Wireless MIMO transmission without Polarization Tracking," in Optical Fiber Communication Conference, Los Angeles, California, 2015, p. W3F.2.
[9] J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, "An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals," Optics Express, vol. 21, pp. 28154-28166, 2013.
[10] A. J. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Optics Express, vol. 16, pp. 860-865, 2008.
[11] P. Chanclou, A. Pizzinat, F. L. Clech, T. L. Reedeker, Y. Lagadec, F. Saliou, et al., "Optical fiber solution for mobile fronthaul to achieve cloud radio access network," in Future Network and Mobile Summit (FutureNetworkSummit), 2013, 2013, pp. 1-11.
[12] R. Chang and R. Gibby, "A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme," IEEE Transactions on Communication Technology, vol. 16, pp. 529-540, 1968.
[13] R. W. Chang, "Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission," Bell System Technical Journal, vol. 45, pp. 1775-1796, 1966.
[14] S. J. Savory, "Digital Signal Processing Options in Long Haul Transmission," in Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on, 2008, pp. 1-3.
[15] A. Villafranca, J. Lasobras, and I. Garces, "Precise characterization of the frequency chirp in directly modulated DFB lasers," in 2007 Spanish Conference on Electron Devices, 2007, pp. 173-176.
[16] P. J. Winzer and R. J. Essiambre, "Advanced Optical Modulation Formats," Proceedings of the IEEE, vol. 94, pp. 952-985, 2006.
[17] K. Yonggyoo, L. Hanlim, L. Jaehoon, H. Jaeho, T. W. Oh, and J. Jichai, "Chirp characteristics of 10-Gb/s electroabsorption modulator integrated DFB lasers," IEEE Journal of Quantum Electronics, vol. 36, pp. 900-908, 2000.
[18] H.-S. Kim, B.-S. Choi, K.-S. Kim, D. C. Kim, O. K. Kwon, and D.-K. Oh, "Improvement of modulation bandwidth in multisection RSOA for colorless WDM-PON," Optics Express, vol. 17, pp. 16372-16378, 2009.
[19] R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator," IEEE Photonics Technology Letters, vol. 17, pp. 714-716, 2005.
[20] R. G. Hunsperger, Integrated Optics: Theory and Technology: Springer Publishing Company, Incorporated, 2009.
[21] J. Armstrong, "OFDM for Optical Communications," Journal of Lightwave Technology, vol. 27, pp. 189-204, 2009.
[22] A. James Lowery and J. Armstrong, "Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems," Optics Express, vol. 14, pp. 2079-2084, 2006.
[23] W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electronics Letters, vol. 42, pp. 587-589, 2006.
[24] J. M. Tang, P. M. Lane, and K. A. Shore, "High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly Modulated DFBs," Journal of Lightwave Technology, vol. 24, pp. 429-441, 2006.
[25] T. Keller and L. Hanzo, "Adaptive modulation techniques for duplex OFDM transmission," IEEE Transactions on Vehicular Technology, vol. 49, pp. 1893-1906, 2000.
[26] R. A. Shafik, M. S. Rahman, and A. R. Islam, "On the Extended Relationships Among EVM, BER and SNR as Performance Metrics," in 2006 International Conference on Electrical and Computer Engineering, 2006, pp. 408-411.
[27] M. Fabbri and P. Faccin, "Radio over Fiber Technologies and Systems: New Opportunities," in 2007 9th International Conference on Transparent Optical Networks, 2007, pp. 230-233.
[28] P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Design and Analysis of Digitized RF-Over-Fiber Links," Journal of Lightwave Technology, vol. 27, pp. 2052-2061, 2009.
[29] J. Guillory, A. Pizzinat, B. Charbonnier, and C. Algani, "60 GHz intermediate frequency over fiber using a passive multipoint-to-multipoint architecture," in Networks and Optical Communications (NOC), 2011 16th European Conference on, 2011, pp. 44-47.
[30] A. Nirmalathas, C. Ranaweera, W. Ke, Y. Yizhuo, I. Akhter, C. Lim, et al., "Photonics for gigabit wireless networks," in Optical Fiber Communications Conference and Exhibition (OFC), 2015, 2015, pp. 1-3.
[31] M. Morant, J. Pérez, and R. Llorente, "Polarization Division Multiplexing of OFDM Radio-over-Fiber Signals in Passive Optical Networks," Advances in Optical Technologies, vol. 2014, p. 9, 2014.
[32] B. Wu, J. Y. Sung, J. H. Yan, M. Xu, J. Wang, F. Yan, et al., "Polarization-Insensitive Remote Access Unit for Radio-Over-Fiber Mobile Fronthaul System by Reusing Polarization Orthogonal Light Waves," IEEE Photonics Journal, vol. 8, pp. 1-8, 2016.
[33] H. Haunstein and H. M. Kallert, "Influence of PMD on the performance of optical transmission systems in the presence of PDL," in Optical Fiber Communication Conference and International Conference on Quantum Information, Anaheim, California, 2001, p. WT4.
[34] "ITU-T Recommendation G.975.1," Appendix I.9 (2004).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *