|
[1] Siegel P H. Terahertz technology[J]. IEEE Transactions on microwave theory and techniques, 2002, 50(3): 910-928. [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature photonics, 2007, 1(2): 97-105. [3] Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology.Nature Mater. 1, 26–33 (2002). [4] Siegel, P. H. Terahertz technology.IEEE Trans. Microwave Theory Tech.50, 910–928 (2002). [5] Kawase, K., Shikata, J. & Ito, I.Terahertz wave parametric source. J. Phys. D 34, R1– R14 (2001). [6] Shoji I, Kondo T, Kitamoto A, Shirane M and Ito R 1997 J. Opt. Soc. Am. B 14 2268 [7] Kawase K, Shikata J, Minamide H, et al. Arrayed silicon prism coupler for a terahertz- wave parametric oscillator[J]. Applied optics, 2001, 40(9): 1423-1426. [8] Boyd R W. Nonlinear optics[M]. Academic press, 2003. [9] Chiang A C, Wang T D, Lin Y Y, et al. Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies[J]. Optics letters, 2005, 30(24): 3392-3394. [10] Chiang A C, Lin Y Y, Wang T D, et al. Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate[J]. Optics letters, 2002, 27(20): 1815-1817. [1] Boyd R W. Nonlinear optics[M]. Academic press, 2003. [2] Lee Y S. Principles of terahertz science and technology[M]. Springer Science & Business Media, 2009. [3] Kawase K, Sato M, Nakamura K, et al. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition[J]. Applied physics letters, 1997, 71(6): 753-755. [4] Shikata J, Kawase K, Karino K, et al. Tunable terahertz-wave parametric oscillators using LiNbO 3 and MgO: LiNbO 3 crystals[J]. IEEE Transactions on Microwave theory and Techniques, 2000, 48(4): 653-661. [5] Sussman S S. Tunable light scattering from transverse optical modes in lithium niobate[R]. STANFORD UNIV CA MICROWAVE LAB, 1970. [6] Schmid C. Exact treatment of the saturation behaviour of second-harmonic generation[J]. Zeitschrift für Physik, 1968, 215(4): 377-394. [7] Crimmins T F, Stoyanov N S, Nelson K A. Heterodyned impulsive stimulated Raman scattering of phonon–polaritons in LiTaO3 and LiNbO3[J]. The Journal of chemical physics, 2002, 117(6): 2882-2896. [8] Wong K K. Properties of lithium niobate[M]. IET, 2002. [9] Theuer M, Torosyan G, Rau C, et al. Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler[J]. Applied physics letters, 2006, 88(7): 71122-71122. [10] Kawase K, Sato M, Taniuchi T, et al. Coherent tunable THz‐wave generation from LiNbO3 with monolithic grating coupler[J]. Applied Physics Letters, 1996, 68(18): 2483-2485. [11] Jia-ming liu Photonic Devices[M] Cambridge press, 2009 [12] Staus C, Kuech T, McCaughan L. Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes[J]. Optics express, 2008, 16(17): 13296-13303.
[13] Kogelnik H, Shank C V. Coupled‐wave theory of distributed feedback lasers[J]. Journal of applied physics, 1972, 43(5): 2327-2335. [14] Chiang A C, Wang T D, Lin Y Y, et al. Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies[J]. Optics letters, 2005, 30(24): 3392-3394. [15] Giordmaine J A, Miller R C. Tunable Coherent Parametric Oscillation in LiNb O 3 at Optical Frequencies[J]. Physical Review Letters, 1965, 14(24): 973. [16] Brosnan S J, Byer R L. Optical parametric oscillator threshold and linewidth studies[J]. IEEE Journal of Quantum Electronics, 1979, 15: 415-431. [17] Wang T D, Lin Y Y, Chen S Y, et al. Low-threshold, narrow-line THz-wave parametric oscillator with an intra-cavity grazing-incidence grating[J]. Optics express, 2008, 16(17): 12571-12576. [1] Burghoff J, Grebing C, Nolte S, et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate[J]. Applied physics letters, 2006, 89(8): 081108. [2] Thomas J, Heinrich M, Burghoff J, et al. Femtosecond laser-written quasi-phase- matched waveguides in lithium niobate[J]. Applied Physics Letters, 2007, 91(15): 151108. [3] K-JET LASER TEK INC. MMS-1000E manual book. 2013 [4] Lu Z, Zhao K, Li X. Photovoltaic Effect in Ferroelectric LiNbO3 Single Crystal[M]. INTECH Open Access Publisher, 2011. [5] Carpenter L G, Rogers H L, Holmes C, et al. Polish-like facet preparation via dicing for silica integrated optics[C]//SPIE OPTO. International Society for Optics and Photonics, 2013: 862107-862107-6. [6] Courjal N, Guichardaz B, Ulliac G, et al. High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing[J]. Journal of Physics D: Applied Physics, 2011, 44(30): 305101. [7] Chiang A C, Lin Y Y, Wang T D, et al. Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate[J]. Optics letters, 2002, 27(20): 1815-1817.
|