帳號:guest(3.133.134.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳春陽
作者(外文):Wu, Chun Yang
論文名稱(中文):光柵耦合兆赫波光參量離軸共振器
論文名稱(外文):Grating out-coupled off-axis THz parametric oscillation
指導教授(中文):黃衍介
指導教授(外文):Huang,YenChieh
口試委員(中文):陳彥宏
陳明彰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066466
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:69
中文關鍵詞:光柵耦合兆赫波離軸光參量共振器
外文關鍵詞:grating out-coupledTHz waveoff-axisoptical parametric oscillation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:270
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現在關於THz的研究與應用由於其重要性越來越被人所關注,關於THz提高光強度及頻率窄化的要求也越來越重要。傳統的THz光參量振盪器均爲建立signal波的振盪,從而達到窄頻的效果。由於光參量產生器的過程中會產生signal及idle波,所欲我們從單純的signal波振盪拓展到THz波的振盪。衆所周知,一般情況下THz的波長在30 μm到3000 μm之間。我們選擇非線性晶體LiNbO_3作爲實驗材料,其原因一是因爲其非線性係數較大,二是其作爲常用非線性晶體方便易得。在THz光參量產生器中,THz的波長爲100μm到300μm。並且根據非線性過程中的相位匹配原理,THz波與泵浦光存在一個65度的夾角。通常狀態下,這種偏移會對實驗造成不好的影響,但是我們把這種情況與光柵進行了組合,從而產生了在y表面進行光柵反射的分佈式回饋光參量振盪器。通過鐳射或是切割的機械式方式在晶體表面製作光柵。並且根據穿透式光柵的特性,可以在與晶體表面垂直的方向上量測到THz的信號。根據光柵原理,通過在不同角度量測THz的能量大小,可以確定其對應的THz波長及大小,THz其波長半高寬在18μm,換算成頻率爲0.19THz。泵浦光中心波長爲1064.36nm。signal光中心波長爲1071.21nm,其波長半高寬爲0.6nm。
Nowadays the research and application of THz are more and more popular. The THz source of narrow band and high power output are becoming more and more important. The traditional method of getting a narrow band THz wave by optical parametric generation is to establish an optical parametric oscillation for signal. In this thesis, we expanded the THz parametric oscillation from the signal wave to the THz wave. As it is known, the wavelengths of THz wave range from 30μm to 3000μm. We chose the nonlinear crystal to do the experiment because of its high nonlinear coefficient and easy accessibility. In the THz parametric generation field, the wavelengths of THz range from 100μm to 300μm. Additionally, according to the phase matching condition for the nonlinear optics process, there is a 65 degree angle between the THz wave and pump light. In general, this walk-off effect is bad for the THz research; however we combine this effect with the grating effect to establish a y-surface reflection distributed feed-back THz parametric oscillation crystal. The grating is fabricated on the surface by the mechanical method of laser cutting. According to the transmittance effect of grating, we measured the THz wave in the vertical direction to the surface grating, which verifies our design. The narrow band THz can be measured by detecting the THz power in different angles because of the transmittance grating effect. The THz bandwidth is about 18 μm in wavelength or 0.19 THz in frequency. Correspondingly, the pump wavelength is 1064.36 nm and the signal wavelength is 1071.21 nm with a 0.6-nm FWHM bandwidth.
Abstract II
摘要 IV
Chapter 1 Introduction 1
A. Motivation 1
B. THz Source 4
C. THz Parametric Generation 5
D. Improvement of THz Performance 8
Reference 10
Chapter 2 Theoretical Analysis 12
A. Nonlinear Process in Noncentrosymmetric Material 12
B. THz Parametric Generation 16
C. THz Output Coupler 24
D. Waveguide Theory 29
E. Distributed Feedback 33
F. THz Parametric Oscillation 38
Reference 42
Chapter 3 Grating Design and Fabrication 45
A. Methods of Fabrication 45
B. Design 51
C. Measurement 54
Reference 57
Chapter 4 Experimental Result and Analysis 58
A. Experiment Setup 58
B. Result Analysis 60
Chapter 5 Conclusion and Future Work 67
A. Conclusion 67
B. Future Work 68
[1] Siegel P H. Terahertz technology[J]. IEEE Transactions on microwave theory and techniques, 2002, 50(3): 910-928.
[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature photonics, 2007, 1(2): 97-105.
[3] Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology.Nature Mater. 1, 26–33 (2002).
[4] Siegel, P. H. Terahertz technology.IEEE Trans. Microwave Theory Tech.50, 910–928 (2002).
[5] Kawase, K., Shikata, J. & Ito, I.Terahertz wave parametric source. J. Phys. D 34, R1– R14 (2001).
[6] Shoji I, Kondo T, Kitamoto A, Shirane M and Ito R 1997 J. Opt. Soc. Am. B 14 2268
[7] Kawase K, Shikata J, Minamide H, et al. Arrayed silicon prism coupler for a terahertz- wave parametric oscillator[J]. Applied optics, 2001, 40(9): 1423-1426.
[8] Boyd R W. Nonlinear optics[M]. Academic press, 2003.
[9] Chiang A C, Wang T D, Lin Y Y, et al. Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies[J]. Optics letters, 2005, 30(24): 3392-3394.
[10] Chiang A C, Lin Y Y, Wang T D, et al. Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate[J]. Optics letters, 2002, 27(20): 1815-1817.

[1] Boyd R W. Nonlinear optics[M]. Academic press, 2003.
[2] Lee Y S. Principles of terahertz science and technology[M]. Springer Science & Business Media, 2009.
[3] Kawase K, Sato M, Nakamura K, et al. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition[J]. Applied physics letters, 1997, 71(6): 753-755.
[4] Shikata J, Kawase K, Karino K, et al. Tunable terahertz-wave parametric oscillators using LiNbO 3 and MgO: LiNbO 3 crystals[J]. IEEE Transactions on Microwave theory and Techniques, 2000, 48(4): 653-661.
[5] Sussman S S. Tunable light scattering from transverse optical modes in lithium niobate[R]. STANFORD UNIV CA MICROWAVE LAB, 1970.
[6] Schmid C. Exact treatment of the saturation behaviour of second-harmonic generation[J]. Zeitschrift für Physik, 1968, 215(4): 377-394.
[7] Crimmins T F, Stoyanov N S, Nelson K A. Heterodyned impulsive stimulated Raman scattering of phonon–polaritons in LiTaO3 and LiNbO3[J]. The Journal of chemical physics, 2002, 117(6): 2882-2896.
[8] Wong K K. Properties of lithium niobate[M]. IET, 2002.
[9] Theuer M, Torosyan G, Rau C, et al. Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler[J]. Applied physics letters, 2006, 88(7): 71122-71122.
[10] Kawase K, Sato M, Taniuchi T, et al. Coherent tunable THz‐wave generation from LiNbO3 with monolithic grating coupler[J]. Applied Physics Letters, 1996, 68(18): 2483-2485.
[11] Jia-ming liu Photonic Devices[M] Cambridge press, 2009
[12] Staus C, Kuech T, McCaughan L. Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes[J]. Optics express, 2008, 16(17): 13296-13303.

[13] Kogelnik H, Shank C V. Coupled‐wave theory of distributed feedback lasers[J]. Journal of applied physics, 1972, 43(5): 2327-2335.
[14] Chiang A C, Wang T D, Lin Y Y, et al. Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies[J]. Optics letters, 2005, 30(24): 3392-3394.
[15] Giordmaine J A, Miller R C. Tunable Coherent Parametric Oscillation in LiNb O 3 at Optical Frequencies[J]. Physical Review Letters, 1965, 14(24): 973.
[16] Brosnan S J, Byer R L. Optical parametric oscillator threshold and linewidth studies[J]. IEEE Journal of Quantum Electronics, 1979, 15: 415-431.
[17] Wang T D, Lin Y Y, Chen S Y, et al. Low-threshold, narrow-line THz-wave parametric oscillator with an intra-cavity grazing-incidence grating[J]. Optics express, 2008, 16(17): 12571-12576.
[1] Burghoff J, Grebing C, Nolte S, et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate[J]. Applied physics letters, 2006, 89(8): 081108.
[2] Thomas J, Heinrich M, Burghoff J, et al. Femtosecond laser-written quasi-phase- matched waveguides in lithium niobate[J]. Applied Physics Letters, 2007, 91(15): 151108.
[3] K-JET LASER TEK INC. MMS-1000E manual book. 2013
[4] Lu Z, Zhao K, Li X. Photovoltaic Effect in Ferroelectric LiNbO3 Single Crystal[M]. INTECH Open Access Publisher, 2011.
[5] Carpenter L G, Rogers H L, Holmes C, et al. Polish-like facet preparation via dicing for silica integrated optics[C]//SPIE OPTO. International Society for Optics and Photonics, 2013: 862107-862107-6.
[6] Courjal N, Guichardaz B, Ulliac G, et al. High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing[J]. Journal of Physics D: Applied Physics, 2011, 44(30): 305101.
[7] Chiang A C, Lin Y Y, Wang T D, et al. Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate[J]. Optics letters, 2002, 27(20): 1815-1817.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *