帳號:guest(3.139.103.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王維琳
作者(外文):Wang, Wei Lin
論文名稱(中文):On Complexity of Total Vertex Cover on Subcubic Graphs
論文名稱(外文):完全頂點覆蓋問題之計算複雜度
指導教授(中文):孫宏民
指導教授(外文):Sun, Hung Min
口試委員(中文):林春成
潘雙洪
口試委員(外文):Lin, Chun Cheng
Poon, Sheung-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:103065523
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:21
中文關鍵詞:完全頂點覆蓋t-完全頂點覆蓋NP 完全APX 完全3-正則圖次3-正則圖
外文關鍵詞:total vertex covert-total vertex coverNP-completeAPX-completecubic graphsubcubic graph
相關次數:
  • 推薦推薦:0
  • 點閱點閱:244
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
完全頂點覆蓋是一種頂點覆蓋,其誘導子圖的每個連通子圖包含至少兩個點。t-完全頂點覆蓋是一種完全頂點覆蓋,其誘導子圖的每個連通子圖包含至少t 個點。完全頂點覆蓋問題的解答是最小的完全頂點覆蓋,而t-完全頂點覆蓋問題的解答是最小的t-完全頂點覆蓋。在這篇論文中,首先我們證明t-完全頂點覆蓋問題在周長任意大的次3-正則網格連通圖上是NP 完全,接著我們證明t-完全頂點覆蓋問題在3-正則3-連通平面圖上是NP 完全,最後我們證明t-完全頂點覆蓋問題在周長任意大的次3-正則連通圖上是APX 完全。
A total vertex cover is a vertex cover whose induced subgraph consists of a set of connected components, each of which contains at least two vertices. A t-total vertex cover is a total vertex cover where each component of its induced subgraph contains at least t vertices. The total vertex cover (TVC) problem and the t-total vertex cover (t-TVC) problem ask for the corresponding cover set with minimum cardinality, respectively. In this paper, we first show that the t-TVC problem is NP-complete for connected subcubic grid graphs of arbitrary large girth. Next, we show that the t-TVC problem is NP-complete for 3-connected cubic planar graphs. Moreover, we show that the t-TVC problem is APX-complete for connected subcubic graphs of arbitrary large girth.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 NP-completeness for subcubic grid graphs of arbitrary girth 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 TVC problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 t-TVC problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 NP-completeness for 3-connected cubic planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 TVC problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 t-TVC problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Approximation hardness for connected subcubic graphs of arbitrary girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 TVC problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 t-TVC problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Conclusion & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
[1] D. Konig, Vgrafok es matrixok, Matematikai es Fizikai Lapok 38 (1931) 116-119.
[2] J. L. Gross, J. Yellen, Graph Theory and Its Applications, CRC Press, 2005.
[3] J. E. Hopcroft, R. M. Karp, A n^(5/2) algorithm for maximum matchings in bipartite, in: Proceedings of 12th Annual IEEE Symposium on Switching and Automata Theory, 1971, pp. 225-231.
[4] R. M. Karp, Reducibility among combinatorial problems, in: Proceedings of a symposium on the Complexity of Computer Computations, 1972, pp. 85-103.
[5] M. R. Garey, D. S. Johnson, The rectilinear steiner tree problem is NP-complete, SIAM Journal on Applied Mathematics 32 (4) (1977) 826-834.
[6] O. J. Murphy, Computing independent sets in graphs with large girth, Discrete Applied Mathematics 35 (2) (1992) 167-170.
[7] R. Uehara, NP-complete problems on a 3-connected cubic planar graph and their applications, Tech. Rep. TWCU-M-0004, Tokyo Woman's Christian University (1996).
[8] M. de Berg, A. Khosravi, Optimal binary space partitions in the plane, in: Proceedings of the 16th International Conference on Computing and Combinatorics, 2010, pp. 329-343.
[9] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman & Co., 1990.
[10] H. Fernau, D. F. Manlove, Vertex and edge covers with clustering properties: complexity and algorithms, Journal of Discrete Algorithms 7 (2) (2009) 149-167.
[11] P. Crescenzi, A short guide to approximation preserving reductions, in: Proceedings of the 12th Annual IEEE Conference on Computational Complexity, 1997, pp. 262-273.
[12] P. Alimonti, V. Kann, Some APX-completeness results for cubic graphs, Theoretical Computer Science 237 (1-2) (2000) 123-134.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *