|
[1] D. Konig, Vgrafok es matrixok, Matematikai es Fizikai Lapok 38 (1931) 116-119. [2] J. L. Gross, J. Yellen, Graph Theory and Its Applications, CRC Press, 2005. [3] J. E. Hopcroft, R. M. Karp, A n^(5/2) algorithm for maximum matchings in bipartite, in: Proceedings of 12th Annual IEEE Symposium on Switching and Automata Theory, 1971, pp. 225-231. [4] R. M. Karp, Reducibility among combinatorial problems, in: Proceedings of a symposium on the Complexity of Computer Computations, 1972, pp. 85-103. [5] M. R. Garey, D. S. Johnson, The rectilinear steiner tree problem is NP-complete, SIAM Journal on Applied Mathematics 32 (4) (1977) 826-834. [6] O. J. Murphy, Computing independent sets in graphs with large girth, Discrete Applied Mathematics 35 (2) (1992) 167-170. [7] R. Uehara, NP-complete problems on a 3-connected cubic planar graph and their applications, Tech. Rep. TWCU-M-0004, Tokyo Woman's Christian University (1996). [8] M. de Berg, A. Khosravi, Optimal binary space partitions in the plane, in: Proceedings of the 16th International Conference on Computing and Combinatorics, 2010, pp. 329-343. [9] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman & Co., 1990. [10] H. Fernau, D. F. Manlove, Vertex and edge covers with clustering properties: complexity and algorithms, Journal of Discrete Algorithms 7 (2) (2009) 149-167. [11] P. Crescenzi, A short guide to approximation preserving reductions, in: Proceedings of the 12th Annual IEEE Conference on Computational Complexity, 1997, pp. 262-273. [12] P. Alimonti, V. Kann, Some APX-completeness results for cubic graphs, Theoretical Computer Science 237 (1-2) (2000) 123-134. |