帳號:guest(18.226.214.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉聖躉
作者(外文):Liu,Sheng Dun
論文名稱(中文):基於情感分析之爭議性新聞分群法
論文名稱(外文):Clustering Controversial News based on User Perspective with Sentiment Analysis
指導教授(中文):陳宜欣
指導教授(外文):Chen,Yi-Shin
口試委員(中文):蘇豐文
雷松亞
口試委員(外文):Soo,Von-Wun
Ray,Soumya
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:103065503
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:36
中文關鍵詞:情感分析新聞分群法使用者立場
外文關鍵詞:Sentiment AnalysisNew ClusteringUser Perspective
相關次數:
  • 推薦推薦:0
  • 點閱點閱:308
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著互聯網技術的發展,特別是在網路應用程式中,新聞每一天都從世界各地的來源大量湧入網路。導致使用者幾乎不可能的完整的追蹤相關事件。基於這個問題,新聞服務和搜索引擎經變得越來越盛行。就算這些服務有辦法基於內容相似或類別來分類新聞,但是最終結果依然無法代表使用者的立場。本研究的主要目的是通過情感分析判斷使用者立場並提供不同的新聞分群法,並將其方法與傳統的新聞分群法比較。實驗後,我們可以看到利用情感分析的新聞分群法跟使用者回傳的資料有較高的相似性。因此,基於情感分的新聞分群法確實是一個可對應到使用者立場的方法。
With the evolution of Internet technologies, especially in Web applications, news articles flood the Web every day from an extreme amount of news portals from around the world. It is almost impossible for a single person to keep track of an event, or a series of related events. Based on this problem, news services and search engines have become more popular. Despite of the ability to organize the news based on content similarity or categories, the result can't represent user perspective. By all means, the main objective of this research is to propose a different news articles clustering method based on users' perspective by using sentiment analysis and compare it to traditional clustering method. After the experiments, we could see that clustering the news articles with sentiment analysis had a higher similarity according to users' real world usage in comparison to the traditional clustering. Hence, clustering news articles based on sentiment analysis is indeed a viable way to match users' perspective.
Abstract i
Acknowledgement ii
List of Figures v
1 Introduction 1
2 Related Work 6
2.1 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Text classification approach . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Lexicon based approach . . . . . . . . . . . . . . . . . . . . . . . 9
3 Methodology 10
3.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Keyword Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Complete Linkage Clustering . . . . . . . . . . . . . . . . . . . . 13
3.2 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Experiments 17
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 User system setup . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Clustering title . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Clustering first paragraph . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Clustering last paragraph . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.4 Overall performance comparison . . . . . . . . . . . . . . . . . . . 31
5 Conclusion 32
References 33
[1] Carlos Argueta, Elvis Saravia, and Yi-Shin Chen. Unsupervised graph-based patterns extraction for emotion classification. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pages 336–341. ACM, 2015.
[2] Abdelmoula El-Hamdouchi and Peter Willett. Comparison of hierarchic agglomerative clustering methods for document retrieval. The Computer Journal, 32(3):220–227, 1989.
[3] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of document clustering techniques. In KDD workshop on text mining, volume 400, pages 525–526. Boston, 2000.
[4] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, pages 79–86. Association for Computational Linguistics, 2002.
[5] Gilad Mishne et al. Experiments with mood classification in blog posts. In Proceedings of ACM SIGIR 2005 workshop on stylistic analysis of text for information access, volume 19, pages 321–327. Citeseer, 2005.
[6] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the conference on human
language technology and empirical methods in natural language processing, pages 347–354. Association for Computational Linguistics, 2005.
[7] Charles Egerton Osgood, George J Suci, and Percy H Tannenbaum. Percy H. Tannenbaum. The measurement of meaning. 1957.
[8] Peter D Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 417–424. Association for Computational Linguistics, 2002.
[9] Pimwadee Chaovalit and Lina Zhou. Movie review mining: A comparison between supervised and unsupervised classification approaches. In Proceedings of the 38th annual Hawaii international conference on system sciences, pages 112c–112c. IEEE, 2005.
[10] Alistair Kennedy and Diana Inkpen. Sentiment classification of movie reviews using contextual valence shifters. Computational intelligence, 22(2):110–125, 2006.
[11] Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly Voll, and Manfred Stede. Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2):267–307, 2011.
[12] RichardMTong. An operational system for detecting and tracking opinions in on-line discussion. In Working Notes of the ACM SIGIR 2001 Workshop on Operational Text Classification, volume 1, page 6, 2001.
[13] Vasileios Hatzivassiloglou and Kathleen R McKeown. Predicting the semantic orientation of adjectives. In Proceedings of the eighth conference on European chapter of
the Association for Computational Linguistics, pages 174–181. Association for Computational Linguistics, 1997.
[14] Peter D Turney and Michael L Littman. Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS), 21(4):315–346, 2003.
[15] Janyce Wiebe. Learning subjective adjectives from corpora. In AAAI/IAAI, pages 735–740, 2000.
[16] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 168–177. ACM, 2004.
[17] Maite Taboada, Caroline Anthony, and Kimberly Voll. Methods for creating semantic orientation dictionaries. In Proceedings of the 5th Conference on Language Resources and Evaluation (LREC06), pages 427–432, 2006.
[18] Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1):11–21, 1972.
[19] Gerard Salton, Edward A Fox, and HarryWu. Extended boolean information retrieval. Communications of the ACM, 26(11):1022–1036, 1983.
[20] Gerard Salton and Michael J McGill. Introduction to modern information retrieval. 1986.
[21] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5):513–523, 1988.
[22] Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok. Interpreting tf-idf term weights as making relevance decisions. ACM Transactions on Information Systems (TOIS), 26(3):13, 2008.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *