帳號:guest(18.191.218.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):艾德溫
作者(外文):Mejia, Edwin
論文名稱(中文):The Usage Of A Fog Computing And Smart Gateway Implementation For Demand Side-Based Management Game Theoretic Smart Grid Frameworks
論文名稱(外文):霧計算和智能網關實現的用法 - 基於管理需求方的博弈智能電網框架
指導教授(中文):孫宏民
指導教授(外文):Sun, Hung-Min
口試委員(中文):曾文貴
顏嵩銘
洪國寶
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:103065434
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:43
中文關鍵詞:智能電網博弈論霧計算智能網關
外文關鍵詞:Smart GridGame TheoryFog ComputingSmart Gateway
相關次數:
  • 推薦推薦:0
  • 點閱點閱:539
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
The smart grid paradigm provides a two-directional communication between the homeowner and the electric utility, to exchange information regarding energy consumption for the benefit of both parties. This capability has attracted research efforts in combining demand side management-based game theoretic optimization frameworks. These frameworks usually consist of several rounds of optimization, where several messages are being sent back and forth between the smart meter and the electric utility, most likely, over the Internet. However, no research efforts have been conducted on observing the potential impact that these bulk of messages may have over the infrastructure needed by the utility company to process these data transactions, possibly, all at once. On this regard, we propose a fog computing and smart gateway implementation for demand side management-based game theoretic frameworks in order to diminish this potential impact. This implementation can process local energy loads and report the outcome to the utility company, or one of its representatives for servicing purposes.
智能電網的模式提供了房主和電力公司之間的雙向溝通,對於能源消耗雙方的利益交換信息。這種能力吸引了組合的管理需求方博弈論優化框架的研究工作。這些框架通常由多輪優化,其中一些郵件被來回傳送的智能電錶和電力之間,最有可能的,在互聯網上的。然而,沒有研究工作已在觀察可能產生的影響進行了這些群發郵件可能比由電力公司來處理這些數據的交易,可能需要的基礎設施,全部一次。在這方面,我們提出了一個大霧計算和智能網關實施的管理需求方博弈論框架,以減少這種潛在影響。此實現可以處理當地的能源負荷和結果報告給公用事業公司,或其代表為服務宗旨。
Contents
Abstract iii
Acknowledgements iv
List of Figures vii
List of Tables viii
1 Introduction 1
1.1 Key concepts used in our work........................ 1
1.2 Purpose of this work ............................. 6
2 Our user constraint-based game theoretic framework... 8
2.1 Our game theoretic framework ........................ 8
2.1.1 Power system model ......................... 8
2.1.2 Energy cost function ......................... 9
2.1.3 Load control on consumer end.................... 10
2.2 Players..................................... 10
2.2.1 Power company............................ 10
2.2.2 Consumers .............................. 10
2.3 Constraints for appliances and users ..................... 12
2.4 Strategy of the user .............................. 14
2.4.1 Users’ objective function....................... 14
3 Proposed fog computing and smart gateway game theoretic implementation 16
3.1 System architecture.............................. 16
3.2 Workflow of our game theoretic framework on the proposed system archi-
tecture. .................................... 16
3.2.1 Algorithms .............................. 17
4 Description of test bed and results 21
4.1 Software and frameworks used......................... 21
4.2 Software models of neighborhood, houses and appliances . . . . . . . . . . 21 4.2.1 Software modeled houses ...................... 21
4.3 Electric utility/Distribution center ...................... 23
4.4 Networking .................................. 23
4.4.1 WebSocket.............................. 24
4.5 Hardware used ................................ 24
4.5.1 HouseAgent’s hardware ....................... 24
4.5.2 FogAgent’s hardware......................... 24
4.5.3 Electric utility’s hardware ...................... 25
4.6 Physical locations used ............................ 25
4.7 Workflow of testbed.............................. 27
4.8 Results..................................... 30
4.8.1 Fog computing and smart gateway benchmarks . . . . . . . . . . . 30
4.8.2 Data transmitted and received .................... 31
4.8.3 Total system time........................... 31
5 Comparison between a traditional smart grid implementation 32
5.1 Comparison between implementations.................... 33
5.1.1 Comparison of avg. time and total system time. . . . . . . . . . . . 34
5.2 Discussion................................... 35
5.2.1 Response roundtrip ......................... 35
5.2.2 Data received and transmitted .................... 35
5.2.3 Total system time........................... 37
5.3 Others..................................... 37
6 Conclusions
A Resources of the implementation References
38 40 41
References
[1] Clark W. Gellings. The Smart Grid: Enabling Energy Efficiency and Demand Response. The Fairmont Press, Inc, 2009.
[2] Thomas P. Hughes. Technology and Culture. The Johns Hopkins University Press, 1979. Chap. The Electrification of America: The System Builders.
[3] W. Bernard Carlson. Innovation as a Social Process: Elihu Thomson and the Rise of General Electric. Cambridge University Press, 2003.
[4] Peter Palensky and Dietmar Dietrich. “Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads”. IEEE Transactions on Industrial Informatics (Volume:7 , Issue: 3 ). IEEE, Aug. 2011, pp. 381 –388.
[5] C. W. Gellings. “The concept of demand-side management for electric utilities”. Proceedings of the IEEE (Volume:73 , Issue: 10 ). IEEE, Oct. 1985, pp. 1468 –1470.
[6] Gartner Says 6.4 Billion Connected "Things" Will Be in Use in 2016, Up 30 Per- cent From 2015. http://www.gartner.com/newsroom/id/3165317. (Accessed on 04/22/2016).
[7] Matthias Kranz ̃,Paul Holleis and Albrecht Schmidt.“Embedded Interaction:Interacting with the Internet of Things”. IEEE Internet Computing (Volume:14 , Issue: 2 ). IEEE, Mar. 2010, pp. 46 –53.
[8] Soma Shekara Sreenadh Reddy Depuru, Lingfeng Wang and Vijay Devabhaktuni. “Smart meters for power grid: Challenges, issues, advantages and status”. Renewable and Sustainable Energy Reviews. Volume 15, Issue 6. Elsevier Ltd., Aug. 2011,
2736–2742.
[9] Matthias Kranz, Paul Holleis and Albrecht Schmidt. “Embedded Interaction: Interact- ing with the Internet of Things”. IEEE Internet Computing (Volume:14 , Issue: 2 ) (Dec. 2009), pp. 46 –53. ISSN: 1089-7801.
[10] Mohammad Aazam , Pham Phuoc Hung and Eui-Nam Huh. “Smart gateway based communication for cloud of things”. Intelligent Sensors, Sensor Networks and Infor- mation Processing (ISSNIP), 2014 IEEE Ninth International Conference on. Singa- pore: IEEE, Apr. 2014, pp. 1 –6.
[11] Shang Guoqiang, Chen Yanming, Zuo Chao and Zhu Yanxu. “Design and Implemen- tation of a Smart IoT Gateway”. Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing. Beijing: IEEE, Aug. 2013, pp. 720 –723.
[12] Soumya Kanti Datta, Christian Bonnet and Navid Nikaein. “An IoT gateway centric architecture to provide novel M2M services”. Internet of Things (WF-IoT), 2014 IEEE World Forum on. Seoul: IEEE, Mar. 2014, pp. 514 –519.
[13] Flavio Bonomi, Rodolfo Milito, Jiang Zhu and Sateesh Addepalli. “Fog computing and its role in the internet of things”. Proceedings of the first edition of the MCC workshop on Mobile cloud computing. Aug. 2012, pp. 13–16. ISBN: 978-1-4503- 1519-7.
41
[14] Luis M. Vaquero and Luis Rodero-Merino. “Finding your Way in the Fog: Towards a Comprehensive Definition of Fog Computing”. ACM SIGCOMM Computer Com- munication Review archive Volume 44 Issue 5, October 2014 (Oct. 2014), pp. 27– 32.
[15] Is Fog Computing The Next Big Thing In Internet of Things? - Forbes. URL: http: //www.forbes.com/sites/janakirammsv/2016/04/18/is-fog- computing-the-next-big-thing-in-internet-of-things/ #1bd22faa1be2 (visited on 04/28/2016).
[16] M. Yannuzzi, R. Milito, R. Serral-Gracià and D. Montero. “Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and more Fog Computing”. 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Athens: IEEE, Dec. 2014, pp. 325–329.
[17] Flavio Bonomi, Rodolfo Milito, Jiang Zhu and Preethi Natarajan. “Big Data and Internet of Things: A Roadmap for Smart Environments”. Springer International Publishing, 2014. Chap. Fog Computing: A Platform for Internet of Things and Analytics.
[18] Roger B. Myerson. Game Theory. Harvard University Press, 1997.
[19] Frank C. Zagare. Game Theory. SAGE, 1984.
[20] Avinash Dixit and Barry Nalebuff. The Concise Encyclopedia of Economics. 2008.
[21] Peter Kollock. Annual Review of Sociology. Annual Reviews, 1998. Chap. Social Dilemmas: The Anatomy of Cooperation.
[22] Amir-Hamed Mohsenian-Rad, Vincent W. S. Wong, Juri Jatskevich and Robert Schober. “Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid”. IEEE Transactions on Smart Grid (Volume:1 , Issue: 3 ) (Dec. 2010), pp. 320 –331.
[23] Peter Palensky and Dietmar Dietrich. “Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads”. IEEE Transactions on Industrial Informatics (Volume:7 , Issue: 3 ) (June 2011), pp. 381 –388.
[24] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers and Nick Jennings. “Agent-based control for decentralised demand side management in the smart grid”. The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume 1. 2011, pp. 5–12. ISBN: 0-9826571-5-3 978-0-9826571-5-7.
[25] Thillainathan Logenthiran, Dipti Srinivasan and Tan Zong Shun. “Demand Side Management in Smart Grid Using Heuristic Optimization”. IEEE Transactions on Smart Grid (Volume:3 , Issue: 3 ) (June 2012), pp. 1244 –1252.
[26] Zubair Md. Fadlullah, Duong Minh Quan, Nei Kato and Ivan Stojmenovic. “GTES: An Optimized Game-Theoretic Demand-Side Management Scheme for Smart Grid”. IEEE Systems Journal (Volume:8 , Issue: 2 ). IEEE, May 2013, pp. 588 –597.
[27] Naouar Yaagoubi and Hussein T. Mouftah. “User-Aware Game Theoretic Approach for Demand Management”. IEEE Transactions on Smart Grid (Volume:6 , Issue: 2 ). IEEE, Oct. 2014, pp. 716 –725.
42
[28] Christian Ibars, Monica Navarro and Lorenza Giupponi. “Distributed Demand Man- agement in Smart Grid with a Congestion Game”. Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on. Gaithersburg, MD: IEEE, Oct. 2010, pp. 495 –500.
[29] The 2015 Top Ten Programming Languages - IEEE Spectrum. http://spectrum. ieee.org/computing/software/the-2015-top-ten-programming- languages. (Accessed on 05/03/2016).
[30] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “Developing multi- agent systems with a FIPA-compliant agent framework”. Software: Practice and Experience 31.2 (2001), pp. 103–128. ISSN: 1097-024X. DOI: 10.1002/1097- 024X(200102)31:2<103::AID-SPE358>3.0.CO;2-O. URL: http: //dx.doi.org/10.1002/1097-024X(200102)31:2<103::AID- SPE358>3.0.CO;2-O.
[31] Power Consumption of Typical Household Appliances. https://www.daftlogic. com/information-appliance-power-consumption.htm. (Accessed on 03/03/2016).
[32] Power consumption of household appliances. http://www.wholesalesolar. com / solar - information / how - to - save - energy / power - table. (Accessed on 02/03/2016).
[33] Peter Lubbers and Frank Greco. “Html5 web sockets: A quantum leap in scalability for the web”. SOA World Magazine 1 (2010).
[34] Hannu Järvinen, Dario Garcia-Gasulla, and Ulises Cortés. “A Push-Based Agent Communication Model Empowering Assistive Technologies”. International Jour-
nal on Artificial Intelligence Tools 23.01 (2014), p. 1440003. DOI: 10.1142/ S021821301440003X. eprint: http://www.worldscientific.com/ doi/pdf/10.1142/S021821301440003X. URL: http://www.worldscientific. com/doi/abs/10.1142/S021821301440003X.
(此全文未開放授權)
Full Text
Abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *