帳號:guest(18.216.251.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):段佳彤
作者(外文):Tuan, Chia Tung
論文名稱(中文):基於離散哈特利轉換之濾波器組多載波傳輸系統
論文名稱(外文):A Discrete Hartley Transform Based Filter Bank Multicarrier Transmission System
指導教授(中文):王晉良
指導教授(外文):Wang, Chin Liang
口試委員(中文):馮世邁
歐陽源
鐘嘉德
口試委員(外文):Phoong, See-May
Ouyang, Yuan
Chung, Char-Dir
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:103064539
出版年(民國):105
畢業學年度:105
語文別:中文英文
論文頁數:28
中文關鍵詞:哈特利轉換濾波器組多載波
外文關鍵詞:DHTFBMC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:462
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現階段已有不少熱門的5G (Fifth Generation) 候選技術受到注意,而如何得到比使用在4G (Fourth Generation)中最主要技術正交分頻多工(Orthogonal Frequency Division Multiplexing; 簡稱OFDM) 擁有更大的頻譜效益是一項重要的議題。其中,濾波器组多載波 (Filter Bank Multicarrier;簡稱FBMC)便是一個很好的選擇,此系統解決了一些在OFDM系統所產生的一些問題,同時也同高了頻譜效益,而反離散傅立葉轉換(Inverse Discrete Fourier Transform;簡稱IDFT)與離散傅立葉轉換(Discrete Fourier Transform;簡稱DFT)演算法在這個系統之下已被發展了相當長的一段時間。由於在FBMC 系統下所傳輸的訊號皆為實數訊號,我們希望藉由利用只處理純實數運算的離散哈特萊轉換 (Discrete Hartley Transform;簡稱 DHT) 來取代離散傅立葉轉換之傳輸架構,進而降低FBMC調變/解調之運算複雜度來達到更好的傳輸品質。
Filter bank multicarrier (FBMC) transmission using offset quadrature amplitude modulation (OQAM) has received considerable attention for the fifth generation of wireless communication systems. For an FBMC/OQAM system with M subcarriers, two complex M-point inverse discrete Fourier transforms (IDFTs) for modulation along with two complex M-point DFTs for demodulation are required to transmit a sequence of complex M-point QAM data. In this thesis, we propose a FBMC transmission scheme based on the discrete Hartley transform (DHT) as an alternative to FBMC/OQAM to improve the system complexity and/or performance. For a DHT-based FBMC system with M subcarriers, the real part data of a frame of M-point complex QAM data are placed on all subcarriers on a one-by-one basis and each pair of subcarriers’ data with index reversal relationship are combined properly to form new data; the results are then transmitted with frequency diversity through the I-channel by one real M-point IDHT modulation followed by a synthesis filter bank similar to that used for FBMC/OQAM. Similar operations are necessarily performed at the same time for transmitting the corresponding imaginary data through the Q-channel. To recover the transmitted data from the I-channel and Q-channel, we can adopt an analysis filter bank, similar to that used for FBMC/OQAM, followed by real M-point DHT demodulation and appropriate data detection. Since the proposed DHT-based FBMC scheme uses the real DHT, instead of the complex IDFT/DFT, for both modulation and demodulation, it requires less computational complexity than FBMC/OQAM under the same data rate, although more complicated detection methods would be needed at the receiver. As demonstrated by simulation results, the proposed approach achieves close bit-error-rate performance to FBMC/OQAM for zero-forcing detection, but the performance is better if joint maximum-likelihood detection or joint minimum mean-squared error detection is employed to exploit the diversity gain of DHT transmission.

Contents
Absrtract i
Content iii
List of Figures iv
I. Introduction.........................................................................1
II. System Model .....................................................................4
III. The Proposed DHT-Based FBMC System............................7
A. Data Arrangement for I/Q Channel Transmission.................7
B. Orthogonality Condition......................................................11
C. Derivation of the Polyphase Structure................................14
D. Data Detection Methods.....................................................16
1) Joint zero-forcing detection...............................................18
2) Joint minimum mean-squared error (MMSE) detection......18
3) Joint maximum likelihood (ML)detection............................18
E. Complexity Comparison .....................................................19
IV. Simulation Results..............................................................21
V. Conclusion.........................................................................25
VI. References.........................................................................26
[1] J. G. Andrews, S. Buzzi, C. Wan, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
[2] C. X. Wang, F. Haider, G. Xiqi, X. H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014.
[3] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
[4] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in Proc. 2013 IEEE Intelligent Signal Process. Commun. Systems (ISPACS’13), Okinawa, Japan, Dec. 2013, pp. 770–774.
[5] P. Zhouyue and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011.
[6] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: benefits and challenges,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.
[7] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
[8] A. Viholainen, M. Bellanger, and M. Huchard, “PHYDYAS project: physical layer for dynamic access and cognitive radio,” http//www.ict-phydyas.org/.
[9] P.P Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, N.J.: Prentice Hall, 1993.
[10] B. D. Tensubam, N. L. Chanu, and S. Singh, “Comparative analysis of FBMC and OFDM multicarrier techniques for wireless communication networks,” International Journal of Computer Applications, vol. 100, no. 19, Aug. 2014.
[11] L. G. Baltar, I. Slim and J. A. Nossek, “Efficient filter bank multicarrier realizations for 5G,” in Proc. 2015 IEEE International Symposium on Circuits and Systems (ISCAS’15), Lisbon, May 2015, pp. 2608–2611.
[12] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000.
[13] 3GPP TS 36.300 V9.4.0 Release 9: “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,” July 2010.
[14] B. Farhang-Boroujeny and C. H. G. Yuen., “Cosine modulated and offset QAM filter bank multicarrier techniques: A continuous-time prospect,” EURASIP J. Adv. Signal Processing [Online]. 2010, 16 pages, DOI: 10.1155/2010/165654.
[15] K. H. Chen and T. D. Chiueh, “A cognitive radio system using discrete wavelet multitone modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3246–3258, Nov. 2008.
[16] B. Borna and T. N. Davidson, “Efficient filter bank design for filtered multitone modulation,” in Proc. 2004 IEEE International Conference on Communications (ICC’04), vol. 1, Jun. 2004, pp. 38–42.
[17] J. F. Du and S. Signell, “Classic OFDM systems and pulse-shaping OFDM/OQAM systems,” Tech. Rep., KTH-Royal Institute of Technology, Feb. 2007.
[18] J. Proakis, Digital Communications. New York: McGraw-Hill, 1989.
[19] P. Siohan and C. Roche, “Cosine-modulated filterbanks based on extended Gaussian functions,” IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3052–3061, Nov. 2000.
[20] D. Dasalukunte, S. Mehmood and V. Öwall, “Complexity analysis of IOTA filter architectures in faster-than-Nyquist multicarrier systems,” in Proc. IEEE GLOBECOM, Houston, TX, USA, Dec. 2011.
[21] C.-L. Wang, C.-H. Chang, J.-L. Fang, and J. M. Cioffi, “Discrete Hartley transform based multicarrier modulation,” in Proc. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00), vol. 5, Istanbul, Turkey, Jun. 2000, pp. 2513–2516.
[22] Keith Jones, The Regularized Fast Hartley Transform, Springer, 2009.
[23] A. D. Poularikas, The Handbook of Formulas and Tables for Signal Processing. CRC Press, 1998.
[24] C.-K. Jao, S.-S. Long, and M.-T. Shiue, “DHT-based OFDM system for passband transmission over frequency-selective channel,” IEEE Signal Process. Lett., vol. 17, no. 8, pp. 699–702, Aug. 2010.
[25] D. F. Chiper, “A Novel VLSI DHT Algorithm for a Highly Modular and Parallel Architecture,” IEEE Trans. CircuitsSyst.II, Exp. Briefs, vol.60, no.5, pp.282–286, May 2013.
[26] C.-K. Jao, S.-S Long, and M.-T. Shiue, “On the DHT-based multicarrier transceiver over multipath fading channel,” in Proc. 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, Sep. 2009, pp. 1662-1666.
[27] P.-S. Chen, C.-K. Jao, and M.-T. Shiue, “A low complexity real-valued kernel DHT-based OFDM modulator/demodulator design,” in Proc. 2009 IEEE International Symposium on Circuits and Systems (ISCAS’09), Taipei, Taiwan, May 2009, pp. 1529–1532.
[28] M. S. Moreolo, R. Munoz, and G. Junyent, “Novel power efficient optical OFDM based on hartley transform for intensity-modulated direct-detection systems,” J. Lightw. Technol., vol. 28, no. 5, pp. 798–805, Mar. 2010
[29] C.-Y. Hung and W.-H. Chung “An Improved MMSE-Based MIMO Dtection using Low-Complexity Constellation Search” IEEE Globedcom, Workshop on Broadband Wireless Access

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *