|
[1] J. G. Andrews, S. Buzzi, C. Wan, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014. [2] C. X. Wang, F. Haider, G. Xiqi, X. H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014. [3] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014. [4] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in Proc. 2013 IEEE Intelligent Signal Process. Commun. Systems (ISPACS’13), Okinawa, Japan, Dec. 2013, pp. 770–774. [5] P. Zhouyue and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011. [6] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: benefits and challenges,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014. [7] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002. [8] A. Viholainen, M. Bellanger, and M. Huchard, “PHYDYAS project: physical layer for dynamic access and cognitive radio,” http//www.ict-phydyas.org/. [9] P.P Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, N.J.: Prentice Hall, 1993. [10] B. D. Tensubam, N. L. Chanu, and S. Singh, “Comparative analysis of FBMC and OFDM multicarrier techniques for wireless communication networks,” International Journal of Computer Applications, vol. 100, no. 19, Aug. 2014. [11] L. G. Baltar, I. Slim and J. A. Nossek, “Efficient filter bank multicarrier realizations for 5G,” in Proc. 2015 IEEE International Symposium on Circuits and Systems (ISCAS’15), Lisbon, May 2015, pp. 2608–2611. [12] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000. [13] 3GPP TS 36.300 V9.4.0 Release 9: “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,” July 2010. [14] B. Farhang-Boroujeny and C. H. G. Yuen., “Cosine modulated and offset QAM filter bank multicarrier techniques: A continuous-time prospect,” EURASIP J. Adv. Signal Processing [Online]. 2010, 16 pages, DOI: 10.1155/2010/165654. [15] K. H. Chen and T. D. Chiueh, “A cognitive radio system using discrete wavelet multitone modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3246–3258, Nov. 2008. [16] B. Borna and T. N. Davidson, “Efficient filter bank design for filtered multitone modulation,” in Proc. 2004 IEEE International Conference on Communications (ICC’04), vol. 1, Jun. 2004, pp. 38–42. [17] J. F. Du and S. Signell, “Classic OFDM systems and pulse-shaping OFDM/OQAM systems,” Tech. Rep., KTH-Royal Institute of Technology, Feb. 2007. [18] J. Proakis, Digital Communications. New York: McGraw-Hill, 1989. [19] P. Siohan and C. Roche, “Cosine-modulated filterbanks based on extended Gaussian functions,” IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3052–3061, Nov. 2000. [20] D. Dasalukunte, S. Mehmood and V. Öwall, “Complexity analysis of IOTA filter architectures in faster-than-Nyquist multicarrier systems,” in Proc. IEEE GLOBECOM, Houston, TX, USA, Dec. 2011. [21] C.-L. Wang, C.-H. Chang, J.-L. Fang, and J. M. Cioffi, “Discrete Hartley transform based multicarrier modulation,” in Proc. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00), vol. 5, Istanbul, Turkey, Jun. 2000, pp. 2513–2516. [22] Keith Jones, The Regularized Fast Hartley Transform, Springer, 2009. [23] A. D. Poularikas, The Handbook of Formulas and Tables for Signal Processing. CRC Press, 1998. [24] C.-K. Jao, S.-S. Long, and M.-T. Shiue, “DHT-based OFDM system for passband transmission over frequency-selective channel,” IEEE Signal Process. Lett., vol. 17, no. 8, pp. 699–702, Aug. 2010. [25] D. F. Chiper, “A Novel VLSI DHT Algorithm for a Highly Modular and Parallel Architecture,” IEEE Trans. CircuitsSyst.II, Exp. Briefs, vol.60, no.5, pp.282–286, May 2013. [26] C.-K. Jao, S.-S Long, and M.-T. Shiue, “On the DHT-based multicarrier transceiver over multipath fading channel,” in Proc. 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, Sep. 2009, pp. 1662-1666. [27] P.-S. Chen, C.-K. Jao, and M.-T. Shiue, “A low complexity real-valued kernel DHT-based OFDM modulator/demodulator design,” in Proc. 2009 IEEE International Symposium on Circuits and Systems (ISCAS’09), Taipei, Taiwan, May 2009, pp. 1529–1532. [28] M. S. Moreolo, R. Munoz, and G. Junyent, “Novel power efficient optical OFDM based on hartley transform for intensity-modulated direct-detection systems,” J. Lightw. Technol., vol. 28, no. 5, pp. 798–805, Mar. 2010 [29] C.-Y. Hung and W.-H. Chung “An Improved MMSE-Based MIMO Dtection using Low-Complexity Constellation Search” IEEE Globedcom, Workshop on Broadband Wireless Access
|