帳號:guest(18.116.38.243)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱安
作者(外文):Chen, Yu An
論文名稱(中文):具領航訊號干擾之多細胞上行非正交多重接取系統
論文名稱(外文):Uplink Non-Orthogonal Multiple Access in Multicell Systems under Pilot Contamination
指導教授(中文):洪樂文
指導教授(外文):Hong, Yao Win
口試委員(中文):蔡尚澕
謝欣霖
口試委員(外文):Tsai, Shang Ho
Shieh, Shin Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:103064516
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:領航訊號干擾非正交多重接取大型多天線系統功率控制
外文關鍵詞:pilot contaminationnon-orthogonal multiple accessmassive MIMOpower control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:470
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在提出一個循序最小均方誤差群組解碼機制與合作式功率控制演算法來減少在上行非正交多重接取系統之多細胞干擾與領航訊號干擾。循序解碼是一個關鍵科技用於非正交多重接取系統並可以用來達到容量區域的某個邊界點在沒有多細胞干擾與通道估測錯誤。然而在現實情況中,多細胞干擾可能發生不只於資料傳輸階段,也會以因為在通道估計階段時領航訊號被其他細胞使用者使用而造成的領航訊號干擾形式出現。此論文中,循序最小均方誤差群組解碼機制先被提出來限制這些影響並且利用線性最小均方誤差濾波器繼並行單使用者解碼器之後在每個循序群組解碼的階段來避免最大概似解碼的複雜度。一個可達到的閉合遍歷容量近似式被導出並且被用來決定所有使用者中領航訊號與數據訊號的最佳功率分配。合作式功率控制問題被包裝成所有功率最小化並受限於每個使用者的容量限制,它被外圈的領航訊號與數據訊號功率的最佳化疊代搭配內圈使用 Yates' 的演算法來解標準函數形式的子問題,並藉由模擬結果來展現我們提出方法的效果。
This work proposes a successive minimum mean square error (MMSE) group decoding scheme and a coordinated power control algorithm to reduce the impact of multicell interference and pilot contamination in an uplink non-orthogonal multiple access (NOMA) system. Succes- sive decoding is a key enabling technology in NOMA systems and can be used to achieve certain boundary points of the multiple access capacity region in the absence of multicell interference and channel estimation errors. However, in practice, multicell interference may occur not only in the data transmission phase, but also in the form of pilot contamination in the training phase due to redundant pilot assignment among users in different cells. In this work, a successive MMSE group decoding scheme is first proposed to limit these effects and also to avoid the complexity of maximum likehood decoding by utilizing a linear MMSE fil- tering followed by parallel single-user decoders in each stage of the successive group decoding process. A closed-form approximation of the achievable ergodic rate is derived and utilized to determine the optimal power allocation among the pilot and data symbols of all users. The coordinated power control problem is formulated as a total power minimization problem subject to individual rate constraints for all users’, and is solved using an outer iteration that alternates between the optimization of pilot and data powers, and an inner iteration that utilizes Yate’s algorithm to compute the solutions of the subproblems, which are in the form of standard functions. The effectiveness of the proposed schemes are demonstrated through computer simulations.
Chapter 1: Introduction 1
Chapter 2: System Model 6
Chapter 3: Successive MMSE Group Decoding and its Approximate Achievable Ergodic Rate 10
3. 1: SuccessiveMMSEGroupDecoding(SMGD) 10
3. 2: Approximate Achievable Ergodic Rate under Channel Estimation Errors 12
Chapter 4: Power Control for Uplink NOMA Systems under Pilot Contamination 15
4.1: Subproblem I: Data Transmit Power Control with Fixed Pilot Power 16
4.2: Subproblem II (for Group Gb,l): Pilot Power Control with Fixed Data Transmit Power 18
4.3: Joint Pilot and Data Transmit Power Control 22
4.4: Feasibility 22
4.5: UserGrouping 23
Chapter 5: Simulations and Performance Comparisons 25
Chapter 6: Conclusion 32
Chapter 7: Appendix 33
7.1: ProofofMMSEEstimatehˆb,b′,k 33
[1] S. Shukla, V. Khare, S. Garg, and P. Sharma, “Comparative study of 1G, 2G, 3G and
4G,” J. of Engng., Comp. and Appl. Sci. (JECAC), vol. 2, no. 4, pp. 2700–2711, Apr.
2013.
[2] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-
orthogonal multiple access (NOMA) for cellular future radio access,” IEEE Veh. Tech-
nol. Conf., pp. 1–5, Jun. 2013.
[3] B. Kim, S. Lim, H. Kim, S. Suh, J. Kwum, S. Choi, C. Lee, and D. Hong, “Non-
orthogonal multiple access in a downlink multiuser beamforming system,” IEEE Mili-
tary Commun. Conf., pp. 1278–1283, Nov. 2013.
[4] S. Timotheou, and I. Krikidis, “Fairness for non-orthogonal multiple access in 5G
systems,” IEEE Signal Process. Lett., vol. 22, no. 10, p. 1647-1651, Oct. 2015.
[5] J. Choi, “Minimum power multicast beamforming with superposition coding for mul-
tiresolution broadcast and application to NOMA systems,” IEEE Signal Process. Lett.,
vol. 63, no. 3, p. 791-800, Mar. 2015.
[6] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A minorization-
maximization method for optimizing sum rate in non-orthogonal multiple access sys-
tems,” IEEE Trans. Signal Process., vol. 64, no. 1, pp. 76–88, Jan. 2016.
[7] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-orthogonal
multiple access,” IEEE Trans. Signal Process., vol. 15, no. 1, p. 537-552, Jan. 2016.
[8] N. Zhang, J. Wang, G. Kang, and Y. Liu, “Uplink non-orthogonal multiple access in
5G systems,” IEEE Commun. Lett., vol. 20, no. 3, p. 458-461, Mar. 2016.
[9] B. Kim, W. Chung, S. Lim, S. Suh, J. Kwun, S.Choi, and D. Hong, “Uplink NOMA with
multi-antenna,” IEEE Veh. Technol. Conf., May. 2015.
[10] H. Tabassum, M. S. Ali, E. Hossain, M. J. Hossain, and D. I. Kim, “Non-orthogonal
multiple access (NOMA) in cellular uplink and downlink: Challenges and enabling
techniques,” arXiv preprint arXiv:1608.05783, Aug. 2016.
[11] Y. Endo, Y. Kishiyama, and K. Higuchi, “Uplink non-orthogonal access with MMSE-
SIC in the presence of inter-cell interference,” IEEE Int. Symp. on Wireless Commun.
Syst. (ISWCS), pp. 261–265, Aug. 2012.
[12] O. Elijah, C. Y. Leow, T. A. Rahman, S. Nunoo, and S. Z. Iliya, “A comprehensive
survey of pilot contamination in massive MIMO?5G system,” IEEE Commun. Surveys
and Tutorials, vol. 18, no. 2, pp. 905–923, Secondquarter 2016.
[13] T. L. Marzetta, “Noncooperative cellular wireless with unlimited number of base
station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600,
Nov. 2010.
[14] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel esti-
mation in large-scale multiple-antenna systems,” IEEE J. Sel. Areas Commun., vol.
31, no. 2, pp. 264–273, Feb. 2013.
[15] L. You, X. Gao, X. G. Xia, N. Ma, and Y. Peng, “Pilot reuse for massive MIMO
transmission over spatially correlated Rayleigh fading channels,” IEEE Trans.
Wireless Commun., vol. 14, no. 6, pp. 3352–3366, Feb. 2015.
[16] J. Jose, A. Shikhmin, T. L. Mazetta, and S. Vishwanath, “Pilot contamination and
precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8,
pp. 2640–2651, Aug. 2011.
[17] A. Ashikhmin, and T. Marzetta, “Pilot contamination precoding in multi-cell large
scale antenna systems,” IEEE Int. Symp. Inf. Theory (ISIT), pp. 1137–1141, May. 2012.
[18] Z. Wang, C. Qian, L. Dai, J. Chen, C. Sun, and S. Chen, “Location-based channel
estimation and pilot assignment for massive MIMO systems,” IEEE Int. Conf.
Commun. Workshop (ICCW), pp. 1264–1268, June. 2015.
[19] N. Krishan, R. D. Yates, and N. B. Mandayam, “Uplink linear receivers for multi- cell
multiuser MIMO with pilot contamination: Large system analysis,” IEEE Trans.
Wireless Commun., vol. 13, no. 8, pp. 4360–4373, Aug. 2014.
[20] J. Hoydis, S. T. Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular
networks: How many antennas do we need?,” IEEE J. Sel. Areas Commun., vol. 31,
no. 2, pp. 160–171, Feb. 2013.
[21] H. Q. Ngo, and E. G. Larsson, “EVD-based channel estimation in multicell multiuser
MIMO systems with very large antenna arrays,” IEEE int. Cof. Acoustics Speech and
Signal Process. (ICASSP), pp. 3249–3252, Mar. 2012.
[22] R. R. Muller, L. Cottatellucci, and M. Vehkapera, “Blind pilot decontamination,” IEEE
J. Sel. Topics in Signal Process., vol. 8, no. 5, pp. 773–786, May. 2014.
[23] D. N. C. Tse, and S. V. Hanly, “Multiaccess fading channels?part I: Polymatroid
structure, optimal resource allocation and throughput capacities,” IEEE Trans. Inf.
Theory, vol. 44, no. 7, p. 2796-2815, Nov. 1998.
[24] N.Prasad, G. Yue, X. Wang, and M. Varanasi, “Optimal successive group decorders
for MIMO multiple-access channels,” IEEE Trans. Inf. Theory, vol. 54, pp. 4821-
4846, Nov. 2005.
[25] C. Gong, A. Tajer, and X. Wang, “Interference channel with constrained partial
group decoding,” IEEE Trans. Commun., vol. 59, no. 11, p. 3059-3071, Nov. 2011.
[26] C. Gong, A. Tajer, and X. Wang, “Constrained group decoder for interference
channels,” IEEE Trans. Commun., vol. 7, no. 5, p. 382-390, May. 2012.
[27] H. Q. Ngo, E. G. Larsson, and T.L. Marzetta, “Energy and spectral efficiency of very
large multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 61, no. 4, pp.
1436-1449, Apr. 2013.
[28] M.K.Varanasi, “Group detection for synchronous gaussian code-division multuple-
access channels,” IEEE Trans. Inf. Theory, vol. 41, pp. 1083-1096, Jul. 1995.
[29] J.Luo, K. Pattipati, and P. Willet, “Optimal grouping algorithm for a group decision
feedback detector in synchronous CDMA communications,” IEEE Trans. Commun.,
vol. 51, pp. 341-346, Mar. 2003.
[30] N. Prasad, and X. Wang, “Outage minimization and rate allocation for the multiuser
gaussian interference channels with successive group decoding,” IEEE Trans. Inf.
Theory, vol. 55, no. 12, pp. 5540-5557, Dec. 2009.
[31] B. Hassibi, and B. M. Hochwald, “How much training is needed in multiple-antenna
wireless link?,” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951-963, Apr. 2003.
[32] S. Murugesan, E. U. Biyikoglu, and P. Schniter, “Optimization of training and
scheduling in the non-coherent SIMO multiple access channel,” IEEE J. Sel. Areas
Commun., vol. 25, no. 7, pp. 1446-1456, Sep. 2007.
[33] H. Q. Ngo, M. Matthaiou, and E. G. Larsson, “Massive MIMO with optimal power and
training duration allocation,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 605-
608, Dec. 2014.
[34] K. Guo, Y. Guo, G. Fodor, and G. Asheid, “Uplink power control with MMSE receiver
in multi-cell MU-massive MIMO systems,” IEEE Conf. on Commun., pp. 5184-5190,
Jun. 2014.
[35] Fundamentals of Statistical Signal Processing: Estimation Theory. Steven M. Kay,
1993.
[36] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for NOMA
downlink and uplink transmission based on signal alignment,” IEEE Trans. Wireless
Commun., vol. 15, no. 6, pp. 4438-4454, Jun. 2016.
[37] U. Madhow, and M. L. Honig, “MMSE interference suppression for direct-sequence
spread-spectrum CDMA,” IEEE Trans. Commun., vol. 42, no. 12, pp. 3178-3188,
Dec. 1994.
[38] T. E. Klein, and R. G. Gallager, “Power control for the additive white gaussian noise
channel under channel estimation error,” IEEE Int. Symp. Inf. Theory (ISIT), Jun.
2001.
[39] H. Gao, P. J. Smith, and M. Clark, “Theoretical reliability of MMSE linear diversity
combining in Rayleigh-fading additive interference channels,” IEEE Trans.
Commun., vol. 46, no. 5, pp. 666-672, May. 1998.
[40] P. Li, D. Paul, R. Narasimhan, and J. Cioffi, “On the distribution of SINR for the
MMSE MIMO receiver and performance analysis,” IEEE Trans. Inf. Theory, vol. 52,
no. 1, pp. 271-286, Jan. 2006.
[41] H. V. Cheng, E. Bjornson, and E. G. Larsson, “Uplink pilot and data power control for
single cell massive MIMO systems with MRC,” Int. Symp. on Wireless Commun.
Syst. (ISWCS), Aug. 2015.
[42] T. E. Bogale, and L. B. Le, “Pilot optimization and channel estimation for multiuser
massive MIMO systems,” Annual Conf. on Inf. Sciences and Systems (CISS), pp. 1-
6, Mar. 2014.
[43] R. D. Yates, “A framework for uplink power control in cellular radio system,” IEEE J.
Sel. Areas Commun., vol. 13, no. 7, pp. 1341-1347, Sep. 1995.
[44] Power Control in Wireless Cellular Networks. M. Chiang, P. Hande, T. Lan, and C. W.
Tan, 2008.
[45] R. Chen, J. G. Andrews, R. W. Heath Jr., and A. Ghosh, “Uplink power control in
multi- cell spatial multiplexing wireless systems,” IEEE Trans. Wireless Commun.,
vol. 6, no. 7, pp. 2700-2711, Jul. 2007.
[46] X. Zhu, Z. Wang, L. Dai, and C. Qian, “Smart pilot assignment for massive MIMO,”
IEEE Commun. Lett., vol. 19, no. 9, pp. 1644-1647, Sep. 2015.
[47] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of gaussian multiple-
access and broadcast channels,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 768-
783, May. 2004.
[48] E. Bjornson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral
efficiency: How many users and pilots should be allocated?,” IEEE Trans. Wireless
Commun., vol. 15, no. 2, pp. 1293-1308, Feb. 2016.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *