帳號:guest(18.222.9.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧聖閔
作者(外文):Lu, Sheng Min
論文名稱(中文):基於錯誤更正碼方法在有號網路下進行社群偵測
論文名稱(外文):Community Detection in Signed Networks: an Error-Correcting Code Approach
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng Shang
口試委員(中文):林華君
黃之浩
李端興
口試委員(外文):Lin, Hwa Chun
Huang, Chih Hao
Lee, Duan Shin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:103064515
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:35
中文關鍵詞:有號網路社群偵測錯誤更正碼
外文關鍵詞:signed networkcommunity detectionerror-correcting code
相關次數:
  • 推薦推薦:0
  • 點閱點閱:634
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在有號網路(signed network)中,鏈結的符號分為正與負;若兩個人中間的鏈結為正,代表這兩人是朋友關係,若兩個人中間的鏈結為負,這兩人便是敵人關係。由平衡定理(balance theorem)可得到:「朋友的朋友即為朋友」、「敵人的敵人即為朋友」、「朋友的敵人即為敵人」等結論。藉此,我們便能根據彼此的鏈結關係,將有號網路的每個人歸類成大大小小的社群。根據Harary's theorem:如果可以將一個圖(graph)分為兩群,則圖中每個迴圈負號的鏈結個數會是偶數。假設在兩個社群中,存在被分錯的節點,則便會有迴圈不符合「擁有偶數個負號鏈結」這個條件。這裡我們引用錯誤更正碼中的奇偶值校驗法,將錯誤的鏈結更正,藉以更正節點的隸屬社群。在此,我們導入了三種錯誤更正的方法:一、位元反向(Bit-Flipping) 二、低密度奇偶檢查碼(Low-densityparity-check code,LDPC code) 三、漢明距離(Hamming distance),透過以上的方法,我們希望可以正確解出鏈結的正負號。
In this paper, we consider the community detection problem in signed networks, where there are two types of edges: positive edges (friends) and negative edges (enemies). One
renowned theorem of signed networks, known as Harary's theorem, states that structurally balanced signed networks are clusterable. By viewing each cycle in a signed network as a parity-check constraint, we show that the community detection problem in a signed network with two clusters is equivalent to the decoding problem for a parity-check code. We also show how one can use three renowned decoding algorithms in error-correcting codes for community detection in signed networks: the bit-flipping algorithm, the belief propagation algorithm, and the Hamming distance algorithm. In particular, the Hamming distance algorithm is shown to be equivalent to an optimization problem that can be heuristically solved by using the fast unfolding algorithm for community detection in unsigned networks. It can also be extended to signed networks with more than two
clusters. We compare the performance of these three algorithms by conducting various experiments with known ground truth. Our experimental results show that the Hamming distance algorithm outperforms the other two.
1 Introduction 4
2 Signed Networks 7
3 Community Detection 9
3.1 Parity-check codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 basis and parity check codes . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The bit-
ipping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 The belief propagation algorithm . . . . . . . . . . . . . . . . . . . . . . 14
3.5 The Hamming distance algorithm . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Extension to more than two clusters . . . . . . . . . . . . . . . . . . . . . 20
4 Experimental Results 22
1
4.1 Community detection with two communities . . . . . . . . . . . . . . . . 22
4.2 Community detection with more than two communities . . . . . . . . . . 25
4.3 Community detection with a real dataset . . . . . . . . . . . . . . . . . . 27
5 Conclusion 29
[1] L. A. Adamic and N. Glance, \The political blogosphere and the 2004 us election:
divided they blog," in Proceedings of the 3rd international workshop on Link discov-
ery. ACM, 2005, pp. 36{43.
[2] A. Lancichinetti and S. Fortunato, \Community detection algorithms: a comparative
analysis," Physical review E, vol. 80, no. 5, p. 056117, 2009.
[3] M. Newman, Networks: an introduction. Oxford university press, 2010.
[4] F. D. Malliaros and M. Vazirgiannis, \Clustering and community detection in di-
rected networks: A survey," Physics Reports, vol. 533, no. 4, pp. 95{142, 2013.
[5] J. Tang, Y. Chang, C. Aggarwal, and H. Liu, \A survey of signed network mining
in social media," arXiv preprint arXiv:1511.07569, 2015.
[6] D. Cartwright and F. Harary, \Structural balance: a generalization of heider's the-
ory." Psychological review, vol. 63, no. 5, p. 277, 1956.
[7] F. Harary et al., \On the notion of balance of a signed graph." The Michigan Math-
ematical Journal, vol. 2, no. 2, pp. 143{146, 1953.
[8] P. Doreian and A. Mrvar, \A partitioning approach to structural balance," Social
networks, vol. 18, no. 2, pp. 149{168, 1996.
33
[9] M. E. Newman and M. Girvan, \Finding and evaluating community structure in
networks," Physical review E, vol. 69, no. 2, p. 026113, 2004.
[10] S. Gomez, P. Jensen, and A. Arenas, \Analysis of community structure in networks
of correlated data," Physical Review E, vol. 80, no. 1, p. 016114, 2009.
[11] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and S. Albayrak,
\Spectral analysis of signed graphs for clustering, prediction and visualization." in
SDM, vol. 10. SIAM, 2010, pp. 559{559.
[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, \Fast unfolding
of communities in large networks," Journal of statistical mechanics: theory and
experiment, vol. 2008, no. 10, p. P10008, 2008.
[13] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River,
2001, vol. 2.
[14] R. E. Blahut, Theory and practice of error control codes. Addison-Wesley Reading
(Ma) etc., 1983, vol. 126.
[15] J. D. Horton, \A polynomial-time algorithm to nd the shortest cycle basis of a
graph," SIAM Journal on Computing, vol. 16, no. 2, pp. 358{366, 1987.
[16] R. Gallager, \Low-density parity-check codes," IRE Transactions on information
theory, vol. 8, no. 1, pp. 21{28, 1962.
[17] H.-C. Lee, G.-X. Huang, C.-H. Wang, and Y.-L. Ueng, \Iterative soft-decision de-
coding of reed-solomon codes using informed dynamic scheduling," in 2015 IEEE
International Symposium on Information Theory (ISIT). IEEE, 2015, pp. 2909{
2913.
[18] F. Heider, \Attitudes and cognitive organization," The Journal of psychology,
vol. 21, no. 1, pp. 107{112, 1946.
34
[19] H. Zhang and J. M. Moura, \The design of structured regular ldpc codes with large
girth," in Global Telecommunications Conference, 2003. GLOBECOM'03. IEEE,
vol. 7. IEEE, 2003, pp. 4022{4027.
[20] J. Fan, Y. Xiao, and K. Kim, \Design ldpc codes without cycles of length 4 and 6,"
Research Letters in Communications, vol. 2008, p. 4, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *