帳號:guest(3.144.4.125)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宇承
作者(外文):Lee, Yu Cheng
論文名稱(中文):干擾對齊技術於六十秭赫室內系統之改良研究
論文名稱(外文):Improved Interference Alignment Algorithms for 60 GHz Indoor Systems
指導教授(中文):趙啟超
指導教授(外文):Chao, Chi chao
口試委員(中文):林茂昭
楊谷章
邱茂清
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:103064513
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:74
中文關鍵詞:六十秭赫干擾對齊多輸入多輸出
外文關鍵詞:60 GHzInterference Alignment (IA)Multiple-input-multiple-output (MIMO)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:315
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於六十秭赫附近存在著廣大的無需執照頻寬,因此六十秭赫頻帶的通訊技術近來受到了許多關注。IEEE 802.15.3c工作團隊制定了中心頻率於六十秭赫之無線個人區域網路的通道模型和相關標準,這裡我們將多輸入多輸出正交分頻多工 (Multiple-Input-Multiple-Output Orthogonal Frequency Division Multiplexing, MIMO-OFDM) 系統應用於IEEE 802.15.3c通道模型下,並且我們考慮有多位使用者正同時在進行通訊,在這種狀況下使用者彼此會互相干擾而影響到通訊品質,干擾對齊技術 (Interference Alignment, IA) 是一種有能有效降低使用者之間干擾影響的方法。
然而,現有的干擾對齊技術之疊代演算法無法保證能收斂到全局極值,在本論文中,我們藉由互換演算法的代價函數來趨近一個效能較佳的區域極值。另外,在多載波的系統下,現有的干擾對齊技術之疊代演算法必須對所有的子載波個別做預編碼矩陣和結合矩陣的設計,我們將演算法改良為對一群子載波做預編碼矩陣和結合矩陣的設計以期降低系統複雜度。最後,我們對現有的和我們所改良後的演算法進行複雜度分析及數值模擬來分析結果。
Owing to the large amount of unlicensed bandwidth in its spectral vicinity, 60 GHz technology has attracted much attention as a means for meeting the growing requirements for high-rate indoor wireless communication. In this thesis, the multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) technique is considered for the IEEE 802.15.3c 60 GHz indoor channel model. In multi-user systems, inter-user interference (IUI) affects the system performance, and interference alignment (IA) is a promising technique for mitigating IUI. Therefore, iterative algorithms of IA are considered in the thesis.
As currently used iterative algorithms of IA are shown to easily fall into local minima, we propose two algorithms for improving the performance by switching cost functions. Another problem with current iterative algorithms is that precoding and combining matrices must be calculated for each subcarrier, which increases the complexity for systems with a large number of subcarriers. We modify two iterative algorithms of IA into carrier grouping type, enabling the system complexity to be reduced through designing precoding and combining matrices for a group of subcarriers. As the initial value is known to be crucial for iterative algorithms, we also introduce a method to choose the initial value for carrier grouping algorithms. Finally, simulation results are shown to compare the performance of each scheme.
1. Introduction 1
2. 60 GHz Indoor Channel and System Models 5
2.1 Overview of 60 GHz Indoor Channel Model . . . . . . . . . . . . . . . . . . 5
2.2 Multi-user MIMO-OFDM System Model . . . . . . . . . . . . . . . . . . . . 9
3. Interference Alignment Algorithms 20
3.1 Iterative Interference Alignment Algorithm . . . . . . . . . . . . . . . . . . . 20
3.2 Maximum SINR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4. Switched Interference Alignment Algorithms 26
4.1 Switched Interference Alignment Algorithm . . . . . . . . . . . . . . . . . . 26
4.2 Weighted Iterative Interference Alignment Algorithm . . . . . . . . . . . . . 27
4.3 Weighted Switched Interference Alignment Algorithm . . . . . . . . . . . . . 30
4.4 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5. Interference Alignment Algorithms with Carrier Grouping 34
5.1 Iterative Interference Alignment Algorithm with Carrier Grouping . . . . . . 34
5.2 Maximum SINR Algorithm with Carrier Grouping . . . . . . . . . . . . . . . 37
5.3 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Initial Value for Interference Alignment Algorithms with Carrier Grouping . 41
6. Simulation Results 44
6.1 Performance Comparison for Switched Interference Alignment Algorithms . . 46
6.2 Performance Comparison for Interference Alignment Algorithms with Carrier
Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Effects of Initialization on Interference Alignment Algorithms with Carrier Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7. Conclusion 70
[1] R. C. Daniels, R. W. Heath, and Jr., ``60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag., vol. 2, no. 3,
pp. 41-50, Sep. 2007.
[2] N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, ``60-GHz millimeter-wave radio: Principle, technology, and new results," EURASIP J. Wireless Commun. and Networking, vol. 2007, pp. 1-8, 2007.
[3] H.-Y. Hsu, T.-H. Tsai, W.-D. Wu, and C.-C. Chao, ``Performance analysis of OFDM systems over 60 GHz indoor channels," in Proc. IEEE Veh. Tech. Conf., Quebec City, Canada, Sep. 2012, pp. 1-6.
[4] S. A. Jafar and M. J. Fakhereddin, ``Degrees of freedom for the MIMO interference channel," IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2637-2642, Jul. 2007.
[5] S. A. Jafar and S. Shamai, ``Degrees of freedom region of the MIMO X channel," IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 151-170, Jan. 2008.
[6] V. R. Cadambe and S. A. Jafar, ``Interference alignment and degrees of freedom of the K-user interference channel," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008.
[7] V. R. Cadambe, S. A. Jafar, and S. Shamai, ``Interference alignment on the deterministic channel and application to fully connected gaussian interference networks," IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 269-274, Jan. 2009.
[8] V. R. Cadambe and S. A. Jafar, ``Interference alignment and the degrees of freedom of wireless X networks," IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 3893-3908, Sep. 2009.
[9] T. Gou and S. A. Jafar, ``Degrees of freedom of the K user M N MIMO interference channel," IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6040-6057, Dec. 2010.
[10] C. M. Yetis, T. Gou, S. A. Jafar, and A. H. Kayran, ``On feasibility of interference alignment in MIMO interference networks," IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4771-4782, Sep. 2010.
[11] K. Gomadam, V. R. Cadambe, and S. A. Jafar, ``A distributed numerical approach to interference alignment and applications to wireless interference networks," IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309-3322, Jun. 2011.
[12] S. W. Peters, R. W. Heath, and Jr., ``Interference alignment via alternating minimization," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Taipei, Taiwan, Apr. 2009, pp. 2445-2448.
[13] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, ``Minimum mean squared error interference alignment," in Proc. 43th Asilomar Conf. Signals, Syst. Com-
put., Pacific Grove, CA, 2009, pp. 1106-1110.
[14] K. Gomadam, V. R. Cadambe, and S. A. Jafar, ``Approaching the capacity of wireless networks through distributed interference alignment," in Proc. IEEE Global Commun.
Conf., New Orleans, LA, Nov. 2008, pp. 1-6.
[15] S.-H. Park, H. Park, Y.-D. Kim, and I. Lee, ``Regularized interference alignment based on weighted sum-MSE criterion for MIMO interference channels," in Proc. IEEE Int.
Conf. Commun., Cape Town, South Africa, May 2010, pp. 1-5.
[16] C. Le, E. Dimitrov, S. Moghaddamnia, and T. Kaiser, ``Performance investigation of MMSE-based interference alignment for multiuser MIMO UWB," in Proc. IEEE Int.
Conf. Ultra-Wideband, Bologna, Italy, Sep. 2011, pp. 170-174.
[17] J. Shin and J. Moon, ``Weighted sum rate maximizing transceiver design in MIMO interference channel," in Proc. IEEE Global Commun. Conf., Houston, TX, Dec. 2011,
pp. 1-5.
[18] S. W. Peters, R. W. Heath, and Jr., ``Cooperative algorithms for MIMO interference channels," IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 206-218, Jan. 2011.
[19] Q. Li, X. Gu, and H. Li, ``MMSE interference alignment with imperfect CSI," in Proc. Second Int. Conf. Instrumentation, Measurement, Comput., Commun. Control, Harbin,
China, Dec. 2012, pp. 197-201.
[20] P. Pardalos and H. Romeijn, Handbook of Global Optimization, vol. 2. Dordrecht, Netherlands: Kluwer, 2002.
[21] C.-C. Chou, H.-J. Chou, and J.-M. Wu, ``Exploiting the initial and the final conditions for the alternating minimization algorithm," in Proc. IEEE Int. Conf. Commun.,
Budapest, Hungary, Sep. 2013, pp. 5242-5246.
[22] S.-K. Yong, et al., ``TG3c channel modeling sub-committee final report," IEEE doc.:IEEE 802.15-07-0584-01-003c, Sep. 2010.
[23] S. Yoon, T. Jeon, and W. Lee, ``Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks," IEEE J. Sel. Areas Commun., vol. 27, no. 8,
pp. 1425-1432, Oct. 2009.
[24] H. Lutkepohl, Handbook of Matrices. New York: Wiley, 1997.
[25] M. Pischella and E. Vivier, ``Comparison of distributed space and frequency interference alignment," in Proc. IEEE 21st Int. Symp. Personal Indoor and Mobile Radio Commun., Instanbul, Turkey, Sep. 2010, pp. 532-537.
[26] G. J. Foschini and R. K. Mueller, ``The capacity of linear channels with additive gaussian noise," Bell Syst. Tech. J., vol. 49, pp. 81-94, Jan. 1970.
[27] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1990.
[28] ``IEEE standard for information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific require-
ments. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs) amendment 2:
Millimeter-wave-based alternative physical layer extension," IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), pp. c1-187, Oct. 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *