帳號:guest(3.143.218.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡祐瑄
作者(外文):Hu, You Xuan
論文名稱(中文):適用於大規模多輸入多輸出天線系統之波束索引空間調變偵測方法
論文名稱(外文):Detection Methods of Beam-Index Spatial Modulation for Massive MIMO Systems
指導教授(中文):吳仁銘
指導教授(外文):Wu, Jen Ming
口試委員(中文):蔡育仁
伍紹勳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:103064512
出版年(民國):105
畢業學年度:105
語文別:中文英文
論文頁數:39
中文關鍵詞:大規模多輸入多輸出波束成形空間調變廣義空間調變
外文關鍵詞:Massive MIMOBeamformingSpatial ModulationGeneralized Spatial Modulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:419
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
人們對於更高的數據傳輸速率、更高的系統容量、更高的能量效率、更低的延遲、更佳的聯結可靠性等等要求不斷的增加,推動了下世代無線通訊系統的研究。現今使用的微米波頻段已無法滿足上述的要求,因此轉而開拓介於30GHz到300GHz的毫米波頻段。然而,在毫米波通道中,高載波頻率造成的高傳播損耗導致受限的散射環境和有效反射路徑的缺乏。為了對抗這些缺陷,大規模多輸入多輸出天線搭配波束成型成為在下世代通訊中前景被看好的技術。為了滿足各項通訊應用的不同特性,同時達成以上所提人們對下世代通訊的需求是不必要且通常是不可行的。因此,下世代通訊所需要的是具有靈活適應性的通訊系統。在目前的研究中,空間調變與廣義空間調變這兩種新興的技術藉由調整系統的參數,以達到高頻譜效率或高能量效率,提供了更好的靈活性。我們結合廣義空間調變與波束成型的技術,提出了”波束索引空間調變(Beam-Index Spatial Modulation)”,且修改了以往的接收端偵測方法使其適用於偵測波束索引空間調變中由正交振幅調變符元與零點組合而成的訊號。我們的結果顯示此技術在通道訊雜比良好的環境下擁有比傳統技術更好的錯誤率表現,且經過修改的偵測方法皆可用於偵測此技術調變的訊號。同時,我們也提供了可以根據不同情況選擇最適合此技術的偵測方法的規則。
The increasing demand for higher data rate, higher system capacity, higher energy efficiency, lower latency, better link reliability leads to the research for the next generation of wireless communication systems. The current microwave spectrum is unable to handle the demand. Therefore, the spectrum in the millimeter wave (mmWave) band from 30GHz to 300GHz is exploited. However, in mmWave channel, the high propagation loss caused by high carrier frequency results in limited scattering environment and lack of resolvable reflected paths. To combat these drawbacks, massive MIMO beamforming becomes a promising technology in the next generation. In order to satisfy the varieties of application features, it is unnecessary and usually infeasible to achieve all the requirements simultaneously. More agile in flexibility or so called “soft”communication systems are needed. Spatial modulation and generalized spatial modulation are new technologies that provide better flexibility in adjusting the system parameters to achieve spectral efficiency or energy efficiency. We combine the concept of GSM and beamforming technology to propose the "Beam-Index Spatial Modulation (BISM)" scheme, and modify the detection methods for BISM since the symbol vector is composed of QAM symbols and zeros. Our results show that BISM has better BER performance than MIMO-BF in the high Eb/N0 region, and the modified detection methods are feasible to detect BISM signal. We provide a decision rule for BISM to choose the most suitable detection methods according to different situations.
摘要 i
Abstract ii
Contents iii
1 Introduction 1
1.1 Foreword 1
1.2 Motivation and Objective 3
1.3 Thesis Organization 4
2 Background 5
2.1 Massive MIMO 5
2.2 Beamforming 6
2.3 Spatial Modulation 6
2.4 Generalized Spatial Modulation 8
3 Beam-Index Spatial Modulation Detection 10
3.1 System Descriptions 10
3.2 Beam-Index Spatial Modulation 11
3.3 BISM Maximum-Likelihood Detection and Theoretical Average Bit Error Probability Bound 13
3.4 BISM Sphere Decoding Detection 15
3.5 BISM Approximate Message Passing Detection 19
3.6 Complexity Analysis 24
4 Simulation Results 26
4.1 Simulation Parameters 26
4.2 BISM ML Detection and Theoretical ABEP Bound 27
4.3 BISM SD detection 28
4.4 BISM AMP Detection 30
4.5 Complexity Analysis 31
5 Conclusions 36
[1] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013.
[2] A. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, “Millimeter-wave massive MIMO: The next wireless revolution?,” IEEE Communications Magazine, vol. 52, no. 9, pp. 56–62, 2014.
[3] W. Roh, J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Communications Magazine, vol. 52, no. 2, pp. 106–113, 2014.
[4] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Communications Magazine, vol. 49, no. 6, pp. 101–107, 2011.
[5] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation,” Proceedings of the IEEE, vol. 102, no. 1, pp. 56–103, 2014.
[6] E. Basar and S. Member, “Index Modulation Techniques for 5G Wireless Networks,” no. 114, pp. 1–14, 2016.
[7] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, 2014.
[8] G. Raleigh and J. Cioffi, “Spatio-temporal coding for wireless communication,” IEEE Transactions on Communications, vol. 46, no. 3, pp. 357–366, 1998.
[9] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Transactions on Communications, vol. 49, no. 12, pp. 2198–2206, 2001.
[10] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. A. C. W. Ahn, and S. Y. S. Yun, “Spatial Modulation,” IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp. 2228–2241, 2008.
[11] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: optimal detection and performance analysis,” IEEE Communications Letters, vol. 12, no. 8, pp. 545–547, 2008.
[12] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial modulation,” Conference Record - Asilomar Conference on Signals, Systems and Computers, pp. 1498–1502, 2010.
[13] A. Younis, D. a. Basnayaka, and H. Haas, “Performance Analysis for Generalised Spatial Modulation,” pp. 1–6, 2014.
[14] M. D. Renzo and H. Haas, “A General Framework for Performance Analysis of Space Shift Keying (SSK) Modulation for MISO Correlated Nakagami-m Fading Channels,” IEEE Transactions on Communications, vol. 58, pp. 2590–2603, sep 2010.
[15] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1639–1642, 1999.
[16] A. D. Murugan, H. El Gamal, M. O. Damen, and G. Caire, “A unified framework for tree search decoding: Rediscovering the sequential decoder,” IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 933–953, 2006.
[17] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2806–2818, 2005.
[18] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in digital communications,” IEEE Transactions on Signal Processing, vol. 53, no. 4, pp. 1474–1484, 2005.
[19] J. A. Cal-Braz and R. Sampaio-Neto, “Low-complexity sphere decoding detector for generalized spatial modulation systems,” IEEE Communications Letters, vol. 18, pp. 949–952, June 2014.
[20] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 2009, pp. 1–6, 2009.
[21] S. Rangan, “Generalized Approximate Message Passing for Estimation with Random Linear Mixing,” Arxiv preprint arXiv:1010.5141, vol. 8, p. 24, oct 2010.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *