帳號:guest(3.144.242.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭竣哲
作者(外文):Zheng, Jyun Jhe
論文名稱(中文):大規模多輸入多輸出非正交多重接取下行系統之聯合功率分配、預編碼與解碼技術
論文名稱(外文):Joint Power Allocation, Precoding, and Decoding for Downlink Massive MIMO Non-Orthogonal Multiple Access Systems
指導教授(中文):王晉良
指導教授(外文):Wang, Chin Liang
口試委員(中文):古聖如
楊谷章
陳永芳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:103064505
出版年(民國):105
畢業學年度:105
語文別:英文中文
論文頁數:28
中文關鍵詞:區塊對角化均方誤差大規模多輸入多輸出非正交多重接取功率分配預編碼
外文關鍵詞:Block diagonalization (BD)mean-squared error (MSE)massive multiple-input multiple-output (MIMO)non-orthogonal multiple access (NOMA)power allocationprecoding
相關次數:
  • 推薦推薦:0
  • 點閱點閱:407
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技的蓬勃發展,未來對於無線通訊系統的容量需求也日漸嚴苛,因為如此,非正交多重接取 (non-orthogonal multiple access;簡稱NOMA) 成為5G候選技術,並且開始受到重視。然而,使用者之間的干擾在NOMA系統下也是一個必須解決的難題。在論文中,基於NOMA系統的基本架構,我們進一步結合大規模多輸入多輸出 (massive multiple-input multiple-output;簡稱massive MIMO) 系統來提升整體的容量,提出了大規模多輸入多輸出非正交多重接取 (massive MIMO-NOMA) 下行系統。在此系統中我們首先考慮一個基地台 (base station;簡稱BS) 及多個使用者,此多個使用者會被兩兩分成多個群組。基地台會將給多個群組中的使用者們的訊號疊加後再廣播出去,因此群組干擾必然會產生。首先,各個群組會有各自的傳送端天線相關性的特徵向量,將群組干擾項各自的特徵向量做列擺放,形成一個大矩陣,並對其找出零核空間,透過干擾項的零和空間作為預編碼器的設計,可以將群組間的干擾消除。接著,考量到單一個群組兩個使用者解訊號的所有過程,我們提出最小化最大的均方誤差來設計同群組間使用者的功率分配演算法。為了更近一步改善使用者錯誤率的效能,得到群組組間的功率分配後,我們提出聯合功率分配、預編碼器和解碼器的設計,基於最小化所有使用者解自己訊號的均方誤差的總和,隨後我們推導出相對應的預編碼器和解碼器,並透過迭代演算法來將功率分配係數、預編碼器和解碼器交替最佳化,並達到收斂來得到最佳的功率分配、預編碼器和解碼器,用以改善系統的錯誤率。
In this thesis, we present a joint design for power allocation, precoding, and decoding in downlink massive multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems with a base station and multiple users, where the users are divided into multiple clusters of two users each. A precoder design based on block diagonalization (BD) is first proposed to eliminate the inter-cluster interference. With this, the multi-cluster MIMO-NOMA channel can be decomposed into multiple parallel independent single-cluster MIMO-NOMA channels. Considering all the decoding processes of the two users in a single cluster, we then derive a closed-form power allocation formula based on minimizing the maximum mean-squared error (MSE) of the corresponding decoded signals. Furthermore, we formulate an optimization problem in terms of the precoders and decoders for minimizing the sum of MSEs of all the users in the downlink massive MIMO-NOMA system under a total power constraint. A joint algorithm is subsequently developed to iteratively obtain the power allocation factors, precoders, and decoders until convergence. Simulation results demonstrate that the proposed joint design method provides a significant improvement in the bit-error-rate performance over the scheme using fixed power allocation, BD based precoding, and minimum MSE based decoding.
Contents
Absrtract   i
Contents   ii
List of Figures iii
I. Introduction.....................................................1
II. System Model.....................................................5
III. Propsoed Tranceiver Design.......................................8
A. Inter-cluster Interference Cancellation..........................8
B. Optimal Decoder Design..........................................10
C. Power Allocation Between the Two Users for a Single Cluster.....11
D. Joint Power Allocation, Precoding, and Decoding.................15
IV. Simulation Results..............................................18
V. Conclusion......................................................24
Appendix................................................................25
References..............................................................27

[1] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, “5G network capacity: Key elements and technologies,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 71–78, Mar. 2014.
[2] A. Benjebbour et al., “Concept and practical considerations of non-orthogonal mutiple access (NOMA) for future radio access,” in Proc. Int. Symposium on Intelligent Signal Process. and Commun. Systems (ISPACS), Okinawa, Japan, Nov. 2013, pp. 770–774.
[3] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (NOMA),” in Proc. IEEE PIMRC, London, U.K., Sep. 2013, pp. 611–615.
[4] P. Wang, J. Xiao, and L. Ping, “Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems,” IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 4–11, Sep. 2006.
[5] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no. 3, pp. 311–335, Mar. 1998.
[6] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585–598, Nov. 1999.
[7] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2381–2401, Sep. 2003.
[8] L.-U. Choi and R. D. Murch, “A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 20–24, Jan. 2004.
[9] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.
[10] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
[11] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Processing Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.
[12] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
[13] W. Ni and X. Dong, “Hybrid block diagonalization for massive multiuser MIMO systems,” IEEE Trans. Commun., vol. 64, no. 1, pp. 201–211, Jan 2016.
[14] J. Park, B. Lee, and B. Shim, “A MMSE vector precoding with block diagonalization for multiuser MIMO downlink,” IEEE Trans. Commun., vol. 60, no. 2, pp. 569–577, Feb. 2012.
[15] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing: The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.
[16] Q. Sun, S. Han, C.-L. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 405–408, Aug. 2015.
[17] C.-L. Wang, J.-Y. Chen, S.-H. Lam, and P. Xiao, “Joint clustering and precoding for a downlink non-orthogonal multiple access system with multiple antennas,” accepted for publication in Proc. IEEE VTC 2016–Fall, Montreal, Canada, Sep. 2016.
[18] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-orthogonal multiple access,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 537–552, Jan. 2016.
[19] Z. Ding, F. Adachi, and H. V. Poor, “Design of massive-MIMO-NOMA with limited feedback,” IEEE Siganl Process. Lett., vol. 23, no. 5, pp. 629–633, May 2016.
[20] K. B. Petersen and M. S. Petersen. (2012, Nov. 15). The Matrix Cookbook [Online]. Available: http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
[21] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Commun., vol. 48, no. 3, pp. 502–513, Mar. 2000.
[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *