帳號:guest(18.222.117.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):汪廷潔
作者(外文):Ting-Jie Wang
論文名稱(中文):一步法溶劑製程PIN鈣鈦礦太陽電池熱處理對光伏特性影響之研究
論文名稱(外文):Effects of thermal annealing on the photovoltage performance of one-step solution processed pin planar Perovskite Solar Cell
指導教授(中文):洪勝富
指導教授(外文):Sheng–Fu Horng
口試委員(中文):孟心飛
冉曉雯
口試委員(外文):Hsin-Fei Meng
Hsiao-Wen Zan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063559
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:80
中文關鍵詞:一步法鈣鈦礦太陽電池
外文關鍵詞:one-stepPerovskite solar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗以 PEDOTPSS(PH1000)作為電洞傳輸層,實驗的元件結構為
ITO/PEDOT:PSS_PH1000/Perovskite/PCBM/Al是標準P-I-N結構之一步法製作的鈣鈦礦太陽電池。為了探討Ph1000對元件的表現。透過改變退火時間與退火溫度,比較不同鈣鈦礦的表面。如果我們能有效控制退火溫度和時間,我們可以得到一個很好的鈣鈦礦太陽電池。更重要的是隨著溶液重量百分比的不同,我們需要不同的退火時間和退火溫度去控制鈣鈦礦太陽電池的成膜。讓元件表現更理想。藉由選擇不同材料當作電洞傳輸層來製作出鈣鈦礦太陽電池,我們知道在相同製程參數下,PH1000所製作的元件的電流大小比AI4083的元件大。本論文所提出的方法擁有在低溫條件下製作的好處和優異的穩定性,對未來朝向大面積化太陽電池的發展是相當有優勢的。
We used PEDOTPSS(PH1000) as the hole transport layer. Our device configuration:Glass/ITO/PEDOT:PSS_PH1000/Perovskite/PCNM/Al/.In order to understanding the device performance which is used the PEDOT:PSS_PH1000 as the hole transport layer. We changed the annealing time and annealing temperature to compare the different perovskite surface. If we could control the annealing time and annealing temperature , We would have a good perovskite solar cell. By using the different materials as the hole transport layer,we know that PH1000 device has larger current than AI4083 device at the same process parameters. With its low processing temperature and high stability,our device may be a promising approach for the large-area production of perovskite solar cells.
目錄
第一章 序論 10
1.1 研究背景 10
1.1.1 前言 10
1.1.2 太陽能電池的發展 11
1.1.3 有機太陽電池的發展 12
1.1.4 鉛鹵鈣鈦礦太陽電池的發展 14
1.2 研究動機及文獻回顧 15
1.3 論文架構 20
第二章 實驗原理 22
2.1 Solar cell 基本介紹 22
2.1.1 Solar cell操作理論 22
2.1.2 理想的Solar Cell 23
2.1.3 Solar cell實際等效模型: 25
2.1.4 Solar cell基本參數: 27
2.1.5 Solar cell操作分析: 31
2.2 太陽能電池材料特性與理論 34
2.2.1 選用的主動層吸光材料 34
2.2.2 選用的電子與電洞傳輸層材料 36
2.2.3 選用的正極與負極材料 38
2.3 鈣鈦礦太陽能電池結構 39
第三章 實驗方法與流程 40
3.1 鈣鈦礦太陽電池製作流程 40
3.2 ITO玻璃設計基板與定義圖形 40
3.2.1 ITO基板 41
3.2.2 貼上乾式光阻 41
3.2.3 曝光 41
3.2.4 顯影 42
3.2.5 蝕刻 42
3.3 清洗ITO玻璃 43
3.4 成膜電洞傳輸層 43
3.5 主動層成膜 44
3.6 電子傳輸層成膜 46
3.7 蒸鍍金屬負電極 46
3.8 封裝 47
3.9 量測 48
第四章 實驗數據討論 51
4.1 量測的差異會造成數據的誤差 51
4.2 主動層退火時間與溫度對太陽電池的影響 55
4.3 比較有無LiF對太陽電池的影響 68
4.4 元件壽命 69
4.5 優化鈣鈦礦太陽電池的方法 72
第五章 總結與未來展望 76

1.Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676-677.
2. Zhao, J., et al., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998. 73(14): p. 1991-1993.
3. Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558.
4. Benagli, S., et al., High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor, in 24th European Photovoltaic Solar Energy Conference. 2009: Hamburg.
5. Coakley, et al., Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
6. Hoppe, et al., Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945.
7. Chaoyang Kuang†§, Gang Tang†§, Tonggang Jiu*†, Hui Yang‡, Huibiao Liu‡, Bairu Li†, Weining Luo†, Xiaodong Li†, Wenjun Zhang†, Fushen Lu§, Junfeng Fang*†, and Yuliang Li*‡ , “Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells”, Nano Lett., 2015, 15 (4), pp 2756–2762
8. Jingjing Chang,ab Hai Zhu,c Bichen Li,a Furkan Halis Isikgor,a Yue Hao,b Qinghua Xu*c and Jianyong Ouyang*a , “Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials”, J. Mater. Chem. A, 2016,4, 887-893
9. Jangwon Seo,a Sangman Park,a Young Chan Kim,a Nam Joong Jeon,a Jun Hong Noh,a Sung Cheol Yoon*a and Sang Il Seok*ab , “Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells”,Energy Environ.Sci, 2014,7, 2642-2646




10. Huanping Zhou1,2 Qi Chen1,2*Yongsheng Liu1,2,Yang Yang1, “Interface engineering of highly efficient perovskite solar cells2”, Science , 2014.Vol. 345, Issue 6196, pp. 542-546
11. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. advance online publication.
12. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518
13. Yani Chen,† Yixin Zhao,‡ and Ziqi Liang*,†“Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl”, Chem. Mater., 2015, 27 (5), pp 1448–1451,
14. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518
15. Gurudayal†, Dharani Sabba‡, Mulmudi Hemant Kumar‡, Lydia Helena Wong†, James Barber†§, Michael Grätzel∥, and Nripan Mathews*†,“Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting”, Nano Lett., 2015, 15 (6), pp 3833–3839
16. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
17. Lany, S. and A. Zunger, Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B, 2005. 72(3): p. 035215.
18. Janotti, A. and C.G. Van de Walle, Oxygen vacancies in ZnO. Applied Physics Letters, 2005. 87(12): p. 122102.
19. Boopathi, K.M., et al., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015. 3(17): p. 9257-9263.
20. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
21. Ji, K.H., et al., Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Applied Physics Letters, 2011. 98(10): p. 103509.
22. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997.
23. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680.
24. Wang, Y.R. and C.B. Duke, Surface reconstructions of ZnO cleavage faces. Surface Science, 1987. 192(2–3): p. 309-322.
25. Kurdesau, F., et al., Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. Journal of Non-Crystalline Solids, 2006. 352(9–20): p. 1466-1470.
26. Brabec, C.J., et al., The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films, 2002. 403–404(0): p. 368-372.
27. Chang, Y.-F., et al., Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency. Journal of Applied Physics, 2013. 114(12): p. 123101.
28. Chen, E.-C., et al., Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Japanese Journal of Applied Physics, 2014. 53(6): p. 062301.
29. Tsai, P.-T., et al., High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Organic Electronics, 2014. 15(4): p. 893-903.
30. Shrotriya, V., et al., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters, 2006. 89(6): p. 063505.
31. CONDUCTIVE POLYMERS DIVISION CleviosTM P VP AI 4083
(http;//goo.gl/IyAeUE).
32. Q.Chen,H.Zhou,Z.Hong,S.Luo,H.S.Duan,“Planar Heterojunction Perovskite Solar Cell via Vapor-Assisted SolutionProcess,”J.Am.Chem.Soc.,136,622-625(2014)
33. P.P. Boix ,K.Nonomura,N.Mathews and S.G.Mhaisalkar, “Current progress and future perspectives for organicinorganic perovskite solar cells, ”Master.Today,17,16-23(2014)
34. K. Tanaka T. Takahashi, T. Ban, T.Kondo,K.Uchida and N. Miura, “Comparative study on the excitons in lead-halide based perovskite-type crystalsCH3NH3PbI3, ”Solid State Communi.,127,619-623(2003)
35. Product Specification[6,6]-Phenyl C61 butyric acid methyl
Ester >99% (http://goo.gl/O5bLYy).
36. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
37. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
38. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *