|
1.Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676-677. 2. Zhao, J., et al., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998. 73(14): p. 1991-1993. 3. Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558. 4. Benagli, S., et al., High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor, in 24th European Photovoltaic Solar Energy Conference. 2009: Hamburg. 5. Coakley, et al., Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542. 6. Hoppe, et al., Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945. 7. Chaoyang Kuang†§, Gang Tang†§, Tonggang Jiu*†, Hui Yang‡, Huibiao Liu‡, Bairu Li†, Weining Luo†, Xiaodong Li†, Wenjun Zhang†, Fushen Lu§, Junfeng Fang*†, and Yuliang Li*‡ , “Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells”, Nano Lett., 2015, 15 (4), pp 2756–2762 8. Jingjing Chang,ab Hai Zhu,c Bichen Li,a Furkan Halis Isikgor,a Yue Hao,b Qinghua Xu*c and Jianyong Ouyang*a , “Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials”, J. Mater. Chem. A, 2016,4, 887-893 9. Jangwon Seo,a Sangman Park,a Young Chan Kim,a Nam Joong Jeon,a Jun Hong Noh,a Sung Cheol Yoon*a and Sang Il Seok*ab , “Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells”,Energy Environ.Sci, 2014,7, 2642-2646
10. Huanping Zhou1,2 Qi Chen1,2*Yongsheng Liu1,2,Yang Yang1, “Interface engineering of highly efficient perovskite solar cells2”, Science , 2014.Vol. 345, Issue 6196, pp. 542-546 11. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. advance online publication. 12. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518 13. Yani Chen,† Yixin Zhao,‡ and Ziqi Liang*,†“Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl”, Chem. Mater., 2015, 27 (5), pp 1448–1451, 14. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518 15. Gurudayal†, Dharani Sabba‡, Mulmudi Hemant Kumar‡, Lydia Helena Wong†, James Barber†§, Michael Grätzel∥, and Nripan Mathews*†,“Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting”, Nano Lett., 2015, 15 (6), pp 3833–3839 16. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625. 17. Lany, S. and A. Zunger, Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B, 2005. 72(3): p. 035215. 18. Janotti, A. and C.G. Van de Walle, Oxygen vacancies in ZnO. Applied Physics Letters, 2005. 87(12): p. 122102. 19. Boopathi, K.M., et al., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015. 3(17): p. 9257-9263. 20. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950. 21. Ji, K.H., et al., Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Applied Physics Letters, 2011. 98(10): p. 103509. 22. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997. 23. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680. 24. Wang, Y.R. and C.B. Duke, Surface reconstructions of ZnO cleavage faces. Surface Science, 1987. 192(2–3): p. 309-322. 25. Kurdesau, F., et al., Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. Journal of Non-Crystalline Solids, 2006. 352(9–20): p. 1466-1470. 26. Brabec, C.J., et al., The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films, 2002. 403–404(0): p. 368-372. 27. Chang, Y.-F., et al., Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency. Journal of Applied Physics, 2013. 114(12): p. 123101. 28. Chen, E.-C., et al., Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Japanese Journal of Applied Physics, 2014. 53(6): p. 062301. 29. Tsai, P.-T., et al., High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Organic Electronics, 2014. 15(4): p. 893-903. 30. Shrotriya, V., et al., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters, 2006. 89(6): p. 063505. 31. CONDUCTIVE POLYMERS DIVISION CleviosTM P VP AI 4083 (http;//goo.gl/IyAeUE). 32. Q.Chen,H.Zhou,Z.Hong,S.Luo,H.S.Duan,“Planar Heterojunction Perovskite Solar Cell via Vapor-Assisted SolutionProcess,”J.Am.Chem.Soc.,136,622-625(2014) 33. P.P. Boix ,K.Nonomura,N.Mathews and S.G.Mhaisalkar, “Current progress and future perspectives for organicinorganic perovskite solar cells, ”Master.Today,17,16-23(2014) 34. K. Tanaka T. Takahashi, T. Ban, T.Kondo,K.Uchida and N. Miura, “Comparative study on the excitons in lead-halide based perovskite-type crystalsCH3NH3PbI3, ”Solid State Communi.,127,619-623(2003) 35. Product Specification[6,6]-Phenyl C61 butyric acid methyl Ester >99% (http://goo.gl/O5bLYy). 36. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093. 37. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647. 38. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
|