帳號:guest(3.143.203.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃凱平
作者(外文):Huang,Kai Ping
論文名稱(中文):應用鰭式場效電晶體於電阻式隨機選取記憶體之研究與其載子傳輸模型
論文名稱(外文):A Study of Resistive Random Access Memory in FinFET and Its Carrier Transport Model
指導教授(中文):金雅琴
指導教授(外文):King,Ya-Chin
口試委員(中文):蔡銘進
林崇榮
口試委員(外文):Tsai,Ming Jin
Lin,Chrong-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063557
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:99
中文關鍵詞:電阻式記憶體鰭式場效電晶體亂數隨機訊號非揮發性記憶體電阻轉換模型
外文關鍵詞:RRAMFinFETRTNNVMModel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:476
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,消費性電子產品如智慧型手機、穿戴式裝置、平板電腦等的普及以及消費者對於裝置多功能的需求,隨著科技的發展記憶體容量的提升以及更快的存取速度。記憶體可簡單的被歸類為揮發性(Volatile)以及非揮發性(Non-volatile),揮發性記憶體有著極快的寫入以及讀取速度優勢,然而面積大以及物理限制使得此種記憶體很難隨著製程發展微縮,非揮發性記憶體中快閃記憶體(Flash memory)主宰非揮發性記憶體市場,但是高操作電壓以及微縮困難,使得新型記憶體得以加速發展,其中電阻式記憶體有著極高的潛力成為下一世代記憶體主流。嵌入式電阻記憶體(Embedded RRAM)中有著極佳的相容性,能夠相容於28奈米之前所有製程,然而隨著製程發展從2D結構進入3D鰭式電晶體,Embedded RRAM勢必需要改良才有辦法在先進製程中實現。
在本論文之中,成功地展示與驗證一完全相容於16 nm互補式金氧半(CMOS)邏輯製程技術下之新穎的接觸電阻式記憶體(FIND RRAM) 相容於先進鰭式場效電晶體邏輯製程。此種新電阻式記憶體不用增加額外光罩或特殊製程步驟,並且記憶元面積288 nm x 265 nm,具有相當高競爭力。藉由電性分析,此電阻式記憶體操作電壓低和快速轉態的特性,並且在可靠度方面設置/重置干擾測試、連續讀取測試顯示出優秀的特性。為了瞭解FIND RRAM的電阻轉換機制,利用起因於電子捕捉與釋放產生的隨機電報雜訊(RTN)之量測法,進一步探討FIND RRAM堆疊層之特性。由RTN模型的輔助之下,量測而得的資料可被用於參數的萃取與分析,以致最終發展出一陷阱引發電阻切換之預測模型。
Recently , due to the rapidly developing of commercial electronics, the demands of fast and mass storage devices increase. The mainstream NVM that dominate the market nowadays, Flash, have suffered from a spectrum of challenges--current leakage, ultra-high apply voltage, and, most important, scale possibility. These barrier, paradoxically, serve as catalyst for full-bloom investigation on new memory technology, especially resistive random access memory, RRAM.As the CMOS process is reaching a limit with the planar structure, FinFET is needed to maintain the scalability and performance of logic integrated circuits.In this dissertation, we propose a embedded RRAM structure that is fabricated by advanced 16nm FinFET CMOS logic process. This memory cell is fully compatible with CMOS logic process without any extra process flow or mask. The new FIND RRAM exhibits a very low set voltage and reset current resulting from the field enhancement on fin corners. The set/reset disturb test, continuous read test , endurance and no reliability concern which guarantee this memory cell as the candidate for next generation.
The random telegraph noise (RTN) generated by electron trapping/de-trapping on the stacking layers was also investigated to determine the RRAM switching mechanism. The RTN model makes it possible for parameter extraction from the measured data. Analyzing the extracted parameters and the measured results lead to a proposed trap-induced resistive switching model.
摘要 I
ABSTRACT III
致謝 IV
內文目錄 VI
附圖目錄 IX
附表目錄 XIV
第一章 1
1.1 前言 1
1.2 論文大綱 3
第2章 電阻式隨機存取記憶體技術與其應用 4
2.1 電阻式隨機存取記憶介紹 4
2.1.1 文獻回顧 4
2.1.2 初始化操作及特性分布 5
2.1.3 操作與極性特性 7
2.2 電阻式記憶體模型 8
2.2.1 自我加速熱溶解模型 8
2.2.2 氧空缺粒子跳躍模型 10
2.3 電阻式記憶體陣列驅動相關研究 11
2.3.1 交叉點電阻式記憶體 11
2.3.2 二極體驅動之電阻式記憶體 12
2.3.3 金氧半電晶體驅動之電阻式記憶體 13
2.4 小結 13
第3章 FINFET電阻式隨機存取記憶體 26
3.1 FINFET電阻式隨機存取記憶體 26
3.1.1 元件結構 27
3.1.2 量測環境介紹 28
3.2 元件電性操作及結構對電性之影響 29
3.3 小結 31
第4章 操作最佳化及可靠度分析 45
4.1 元件操作之測試及最佳化 45
4.2 可靠度分析 47
4.3 小結 49
第5章 利用隨機電報雜訊分析FIND RRAM之電阻轉換模型 66
5.1 隨機電報亂數雜訊介紹及分析 66
5.2 隨機電報雜訊模型 69
5.3 陷阱引發電阻轉換模型 71
5.4 小結 73
第6章 總結 90
參考文獻 91

[1]G. Atwood, “Future Directions and Challenges for ETox Flash Memory
Scaling”, Device and Materials Reliability, IEEE Transactions on, vol. 4, pp.301-305, 2004.
[2]H. P. Belgal, N. Righos, I. Kalastirsky, J. I. Peterson, R. Shiner', and N. Mielke, "A new reliability model for post-cycling charge retention of flash memories," Reliability Physics Symposium Proceedings, 2002. 40th Annual, pp.7,20, 2002
[3] K. Kim, J. H. Choi, J. Choi, and H.-S. Jeong, "The future prospect of
nonvolatile memory," VLSI Technology, pp.88,94, 25-27 April 2005.
[4] J.C. Slonczewski, “Current-driven excitation of magnetic multilayers”, in Journal of Magnetism and Magnetic Materials, vol.159, pp.L1-L7, Jun. 1996.
[5] C.J. Lin, S.H. Kang, Y.J. Wang, K. Lee, X. Zhu, W.C. Chen, X. Li, W.N. Hsu,Y.C. Kao, M.T. Liu, W.C. Chen, Y.Lin, M. Nowak, N. Yu and L. Tran, ” 45nm Low Power CMOS Logic Compatible Embedded STT MRAM Utilizing a Reverse-Connection 1T/1MTJ Cell”, in IEDM, Baltimore, pp.1-4, Dec. 2009.
[6] R.A. Bheda, , J.A. Poovey, J.G. Beu, and T.M. Conte, “Energy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems” , in IGCC, Washington, pp.1-8, 2011.
[7] R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi and J. Tominaga, “Interfacial phase-change memory”, in Nature nanotechnology, pp.501-505, Jul 2011.
[8] C.Y. Lin, D.-Y. Lee, C.C. Lina, and T.Y. Tseng ,“Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices”,in Surface Coatings Technol.,vol. 203, pp. 628–631, Dec .2008.
[9] I.S. Park, K.R. Kim, S. Lee and J. Ahn,”Resistance switching characteristics fornonvolatile memory operation of binarymetal oxides”, J. Appl. Phys., vol. 46,pp. 2172–2174, Apr. 2007.
[10] D. S. Jeong , z. Schroeder, and R. Waser,”Coexistence of bipolar and unipolar resistiveswitching behaviors in a Pt/TiO2/Ptstack”, in Electrochem Solid-State Lett., vol. 10,pp. G51–G53, 2007
[11] K.P. Chang,W.C. Chien,Y.C. Chen,E.K. Lai, S.C.g Tsai,S.H. Hsieh,Y.D.Yao,J. Gong;K.Y. Hsieh,R. Liu and C.Y. Lu, “Low-voltage and fast-speed forming processof tungsten oxide resistive memory,” in Int. Conf. Solid State Devices Mater., Tsukuba ,pp. 1168–1169, Sep .2008,.
[12] Y.W. Chin, S.E.Chen, M.C. Hsieh, T.S. Chang, C.J. Lin, Y.C. King, “Point twin-bit RRAM in 3D interweaved cross-point array by Cu BEOL process”, in IEDM, Dec. 2014.
[13] M.C Hsieh, Y.C. Liao, Y.W. Chin, C.H. Lien, T.S. Chang, Y.D. Chih, Natarajan S, M.J.Tsai, Y.C. King, C.J. Lin, “Ultra high density 3D via RRAM in pure 28nm CMOS process”, in IEDM, Dec. 2013.
[14] W.C. Shen, C.Y. Mei, Y.D. Chih, S.S. Sheu, M.J. Tsai, Y.C. King, C.J. Lin, “High-K metal gate contact RRAM (CRRAM) in pure 28nm CMOS logic process”, in IEDM, Dec. 2012
[15] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S. J. Wind, “Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, in Appl. Phys. Lett., vol.78, pp.3738–3740, 2001
[16]A.Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, ”Reproducible swiching effect in thin oxide films for memory applications”, in Appl. Phys. Lett., 2000.
[17] C. Cagli, D. Ielmini, F. Nardi and A. L. Lacaita, “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction”, in IEDM, pp.1-4, 2008.
[18] Baek, I.G., Lee, M.S. , Seo, S. , Lee, M.-J., Seo, D.H. , Suh, D.-S. , Park, J.C. ,Park, S.O. , Kim, T.I. , Yoo, I.K. , Chung, U-in and Moon, J.T., “Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses”, in IEDM Tech. Dig., pp.587-590,2004
[19] C.H. Wang, Y.H. Tsai, K.C. Lin, M.F Chang, Y.C. King, C. J. Lin, S.S. Sheu, Y.S. Chen, H.Y. Lee, F.T. Chen, M.J. Tsai, “Three-Dimensional 4F2 ReRAM With Vertical BJT Driver by CMOS Logic Compatible Process,” in TED, pp.2466-2472, 2011.
[20] M.C. Hsieh, Y.W. Chin, Y.C. Lin, Y.D. Chih, K.H. Tsai, M.J. Tsai, Y.C. King, and C.J Lin,” A new laterally conductive bridge random access memory by fully CMOS logic compatible process”, J. Appl. Phys., pp.1-5, 2014.
[21] Lv, H.B., Yin, M., Zhou, P. , Tang, T.A. , Ba-Chen and Lin, Y.Y.” Improvement of Endurance and Switching Stability of Forming-Free CuxO RRAM”, in NVSMW/ICMTD, Opio,pp.52-53, 2008
[22] C.I. Hsieh, J.H. Jao, W.C.Chen, C.R. Wu and N.T. Shih, “Forming-free Resistive Switching of TiOx Layers with Oxygen Injection Treatments”, in VLSI-TSA, Hsinchu, pp.1-2, Apr .2011.
[23]HyunjunSim;HyejungChoi,“Excellent resistance switching characteristics of Pt/SrTiO¬3schottky junction for multi-bit nonvolatile memory application”, in IEDM pp.758-761, 2005
[24] Lv, H.; Wan,” Improvement of Resistive Switching Uniformity by Introducing a Thin GST Interface Layer”, in EDL, Volume: 31 , Issue: 9, 2010.
[25] B. Gao, J. F. Kang, Y. S. Chen, F. F. Zhang, B. Chen, P. Huang, L. F. Liu, X. Y. Liu,Y. Y. Wang, X. A. Tran, Z. R. Wang, H. Y. Yu, Albert Chin, “Oxide-based RRAM: Unified microscopic principle for both unipolar and bipolar switching”, in IEDM, pp.17.4.1-17.4.4, 2011.
[26] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices”, in TED, VOL.56, NO.2, pp. 193-200, 2009.
[27] B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han, J. Kang, B. Yu, “Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory”, in EDL, VOL.30, NO.12, pp.1326-1328, 2009.
[28] J. Kang, B. Gao, B. Chen, P. Huang, F. Zhang, L. Liu, X. Liu, “Physical Mechanism of Resistive Switching and Optimization Design of Cell in Oxide-based RRAM,” in ICSICT, pp.1-4, 2012.
[29] B. Chen, Y. Lu, B. Gao, Y.H. Fu, F.F. Zhang, P. Huang, Y.S. Chen, L.F. Liu, X.Y. Liu, J.F. Kang, Y.Y. Wang, Z. Fang, H.Y. Yu, X. Li, X.P. Wang, N. Singh, G. Q. Lo, D. L. Kwong, “Physical Mechanisms of Endurance Degradation in TMO-RRAM”, in IEDM, pp.12.3.1-12.3.4, 2011.
[30] M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J. B. Park , I.G. Baek, I.K. Yoo, “2-stack ID-IR Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications”, in IEDM, pp.771-774, 2007.
[31] E. Linn, R. Rosezin, C. Kügeler and R.Waser, “Complementary resistive switches for passive nanocrossbar memories,” in Nat. Mater., vol.9, pp.403-406, Apr .2010.
[32] J. Lee, J.Shin, D. Lee, W. Lee, S. Jung, M. Jo,J. Park, K. P. Biju, S. Kim, S. Park and H. Hwang, “Diode-less Nano-scale ZrOx/HfOx RRAM Device with Excellent Switching Uniformity and Reliability for High-density Cross-point Memory Applications,” in IEDM Tech. Dig., San Francisco, p. 19.5.1 - 19.5.4, Dec. 2010.
[33] J. Shin, J. Shin1, I. Kim1, K. P. Biju, M.k Jo1, J. Park, J. Lee, S. Jung1, W. Lee, S. Kim, S. Park and H. Hwang, “TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application” in J. Appl. Phys. vol.109, pp.33712, 2011
[34] J.J. Huang and Y.-M. Tseng ; W.C. Luo ; Ch.W. Hsu ; H., T.Hung, “One Selector-One Resistor (1S1R) Crossbar Array for High-density Flexible Memory Applications”, in IEDM Tech. Dig., Washington, pp. 31.7.1 - 31.7.4, 2011.
[35] X.A. Tran, B. Gao, J.F. Kang, X. Wu, L. Wu, Z. Fang, Z.R. Wang, K.L. Pey, Y.C. Yeo, A.Y. Du, M. Liu, B.Y. Nguyen, M.F. Li, H.Y. Yu, “Self-Rectifying and Forming-Free Unipolar HfOx based-High Performance RRAM Built by Fab-Avaialbe Materials”, in IEDM, pp.31.2.1-31.2.4, 2011.
[36] Y. H. Tseng, C.E. Huang ; Kuo, C.H. , Chih, Y.-D. and C. J. Lin, “High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits”, in IEDM Tech. Dig., Baltimore , pp109-112, Dec.2009.
[37] Y. H. Tseng, C.E. Huang , Kuo, C.H. , Chih, Y.-D. and C. J. Lin, “A New High-Density and Ultra small-Cell-Size Contact RRAM (CR-RAM) With Fully CMOS-Logic-Compatible Technology and Circuits”, in IEEE Trans. Electron Devices, vol. 58, p. 53-58, Jan. 2011.
[38] Y.-S. Chen, W.H.Liu, H.Y. Lee1, P.-S. Chen, S.M. Wang, C.H. Tsai,Y.Y. Hsu, P.Y. Gu, W.S. Chen, F.Chen1, C.H. Lien, and M.J. Tsai, “Impact of Compliance Current Overshoot on High Resistance State, Memory Performance, and Device Yield of HfOx Based Resistive Memory and Its Solution”, in VLSI-TSA , Hsinchu, pp.1-2,2011
[39] Akinaga, H.,” Resistive Random Access Memory (ReRAM) Based on Metal Oxides” in Proceedings of the IEEE,Volume : 98,Issue:12,2010
[40] T. Ghani, Armstrong M., Auth C.; Bost M., Charvat P., Glass G., Hoffmann T., Johnson K., Kenyon C., Klaus J., McIntyre B., Mistry K., Murthy A., Sandford J., Silberstein M., Sivakumar, S., Smith P., Zawadzki [41]K., Thompson S., Bohr M., “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors”, in IEDM, Dec.2003.
[42] Dick James,“High-k/metal gates in leading edge silicon devices ,” SEMI Advanced Semiconductor Manufacturing Conference,pp.346-353, May. 2012.
[43] Chen-Han Chou, Chung-Chun Hsu,Steve S. Chung and Chao-Hsin Chien , “3D-TCAD simulation study of the novel T-FinFET structure for sub-14nmmetal-oxide-semiconductor field-effect transistor”, in Silicon Nanoelectronics Workshop (SNW), , pp. 1-2, June 2015.
[44] B. Gao, J. F. Kang, Y. S. Chen, F. F. Zhang, B. Chen, P. Huang, L. F. Liu, X. Y. Liu, Y. Y. Wang, X. A. Tran, Z. R. Wang, H. Y. Yu, and A. Chin, “Oxide-based RRAM: Unified microscopic principle for unipolar and bipolar switching,” in IEDM Tech. Dig., 2011, pp. 17.4.1–17.4.4.
[45] B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han, J. F. Kang, and B.Yu, “Unified physical model of bipolar oxide-based resistive switching memory,” IEEE Electron Device Lett., no. 12, pp. 1326–1328, Dec. 2009.
[46] D. Lee, D.-J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.-O Seo, S. Heo, M. Jo, D.-K Hwang, H. K. Park, M. Chang, M. Hasan and H. Hwang, “ Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,” in IEDM Tech. Dig., 2006.
[47] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Jizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “ Low Power and High Speed Switching of Ti-doped NiO RRAM under the Unipolar Voltage Source of less than 3V,” in IEDM Tech. Dig., pp. 767-770, 2007.
[48] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, ” Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance,” in Appl. Phys. Lett., 93, 033506 (2008).
[49] C. M. Chang, Steve S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, “The Observation of Trapping and Detrapping Effects in High-k Gate Dielectric MOSFETs by a New Gate Current Random Telegraph Noise (IG-RTN) Approach”, in IEDM Tech. Dig., pp.787-790, Dec. , 2007.
[50] N. V. Amarasinghe, Z. Celik-Butler, A. Keshavarz, ”Extraction of oxide trap properties using temperature dependence of random telegraph signals in submicron metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., Vol. 89, No. 10, pp. 5526-5532, May 2001.
[51] S. Lee, H.-J. Cho, Y. Son, D. S. Lee and H. Shin, “Characterization of oxide traps leading to RTN in high-k and metal gate MOSFETs.” IEDM Tech. Dig., pp.763-766, 2009.
[52] R. Soni, P. Meuffels, A. Petraru, M. Weides, C. Kugeler, R. Waser, H. Kohlstedt, “Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise,” J. Appl. Phys. 107, 024517 (2010).
[53] M. Terai, Y. Sakotsubo, Y. Saito, S. Kotsuji and H. Hada, “Effect of bottom electrode of ReRAM with Ta2O5/TiO2 stack on RTN and retention,” in IEDM Tech. Dig., pp.775-778, Dec. , 2009.
[54] Chia-Yu, Chen, Qiushi Ran, Hyun-Jin Cho, Andreas Kerber, Yang Liu, Ming-Ren Lin, and Robert W. Dutton, “Correlation of Id- and Ig-Random Telegraph Noise to Positive Bias Temperature Instability in Scaled High-κMetal Gate n-type MOSFETs”, IRPS, pp. 3A.2.1 – 3A.2.6, April 2011.
[55] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, “A consistent model for the thickness dependence of intrinsic breakdown in ultra thin oxides,” in IEDM Tech. Dig., 1995, p. 863.
[56] J.-W. Wu, J.-W. You, H.-C. Ma, C.-C. Cheng, C.-F. Hsu, C.-S. Chang, G.-W. Huang, and T. Wang, “Excess Low-Frequency Noise in Ultrathin Oxide n-MOSFETs Arising From Valence-Band ElectronTunneling,” IEEE Trans. on Elec. Dev., Vol. 52, No. 9, pp. 2061-2066, 2005.
[57] W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835,1952
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *