帳號:guest(18.221.249.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李忠和
作者(外文):Li, Zhong-He
論文名稱(中文):電磁驅動壓阻感測之CMOS微掃描投影鏡面
論文名稱(外文):An Electromagnetically Driven, Piezoresistively Sensed CMOS MEMS Scanning Mirror for Projection Display
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):邱一
劉承賢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063545
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:微掃描鏡電磁式勞倫茲力壓阻感測
外文關鍵詞:ElectromagneticMicromirrorPiezoresistive Sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本論文使用電磁式微掃描鏡利用羅倫茲力為驅動方式並以雷射作為投影光源,為了能夠感測微掃描鏡的振動行為,運用沉積多晶矽在各扭轉軸上組成壓阻感測器,以利在回授電路做振動控制。
本晶片使用TSMC 2P4M 0.35 um CMOS製程,將電磁式微掃描鏡結構、感測電路與控制電路整合於單一個晶片上,晶片總面積為3.5 mm × 3.6 mm,利用CMOS製程與矽基材來當作結構之質量塊,將快軸與慢軸設計為不同厚度,其中較薄的慢軸可以大幅縮短慢軸長度,降低結構所占面積範圍,另外針對慢軸設計成三根彈簧,可降低應力,避免較大電流驅動時損壞晶片,最後以簡單、低成本的方式開發一套完整的後製程。
完成製程後,微掃描鏡結構之量測結果,快軸共振頻測得為36.6 kHz與慢軸共振頻4.3 kHz,得到與模擬結果一致的模態特性,並且達到SXGA解析度(1280×1024)所需之共振頻。驅動部分採電磁式致動,外部輸入電流至晶片上之線圈與外部磁場交互作用產生勞倫茲力,此方式採用外部磁場與晶片夾45度之架構,驅動雙軸可只需要一組磁場。感測電路部分使用慢軸壓阻感測器,並將輸出的差動訊號經過減法器後,轉為單端訊號,再經過補償電路,確認開迴路增益與相位,符合巴克豪森準則。最後成功的在快軸共振頻達到穩定振盪,投影出一維水平投影,量測其光學角度為3.4度並且此時之驅動電流為6.1 mArms。
An electromagnetic scanning micromirror driven by Lorentz force is studied in this thesis for application in a laser beam scanning projector. In order to produce repetitive scanning at the resonance, polycrystalline silicon deposited on the torsion axis is used to provide piezoresistive sensing of the motion.
The integrated chip containing the mechanical structure, sensing and compensation circuit, is implemented by using the TSMC 2P4M 0.35μm CMOS process. The chip area is 3.5 × 3.6 mm2. By designing torsional beams with different thicknesses for fast and slow scans, the length of the latter can be reduced to minimize the overall scanning mirror size. In addition, the design for the slow axis of three springs can reduce stress and avoid damage to the chip when the larger current driving. We develop a convenient and low-cost post fabrication process and successfully fabricate the scanning micromirror device.
The fabricated micromirror structure designed for SXGA resolution (1280×1024) shows the measured resonant frequencies at 36.6 and 4.3 kHz, respectively, for fast and slow-axis scans. The results are close to the simulated values. Electromagnetic actuation is used for the driving. The Lorentz’s force driving the scanner is created by an external magnet and a current carrying coil. The magnet is placed at 45 degrees relative to the both scan axes. The piezoresistive sensing circuit contains a Wheatstone bridge and a differential-to-single-ended circuit. Through proper gain and phase compensation, sustained oscillation with respect to the fast scan axis is successfully achieved. The optical angle was measured to be 3.4 degrees at 6.1 mArms.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XII
第1章 緒論 13
1-1 前言 13
1-2 文獻回顧 16
1-3 研究動機 20
1-4 晶片系統架構 21
第2章 微掃描鏡結構設計與製作 24
2-1 掃描機制 24
2-2 解析度計算 25
2-3 羅倫茲力制動原理 29
2-4 結構分析與設計 32
2-5 結構模擬 37
2-6 後製程設計 42
2-7 磁場模擬 45
2-8 電路板設計 47
第3章 電路設計與模擬 49
3-1 振盪迴圈 49
3-2 本論文之振盪迴圈架構 51
3-3 感測電路 52
3-4 補償電路 55
3-5 開迴路之補償電路 59
第4章 量測與討論 61
4-1 製程量測 61
4-2 結構模態量測 68
4-3 製程討論 74
4-4 光學量測 77
4-5 電路量測 80
4-6 系統量測 84
4-7 快軸壓阻問題討論 88
第5章 結論與未來 90
第6章 參考文獻 92
第7章 附錄 97
7-1 商用放大器規格表 97
7-2 不同壓阻放法之壓阻感測器 98
7-3 舊版晶片與新版晶片之比較 101
[1] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proc. IEEE, vol. 86, pp. 1552-1574, August. 1998.
[2] K. E. Petersen, "Silicon torsional scanning mirror," IBM J. Res. Dev., vol. 24, no. 5, pp. 631-637, September. 1980.
[3] P. R. Patterson, D. Hah, M. Fujino, W. Piyawattanametha, and M. C. Wu, "Scanning micromirrors: An overview," Proc. SPIE, vol. 5604, pp. 195–207, October. 2004.
[4] C. Liao and J. Tsai, "The evolution of MEMS displays," IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1057–1065, April. 2009.
[5] S. T. S. Holmstrom, U. Baran, H. Urey, "MEMS laser scanners: A review," J. Microelectromech. Syst., vol. 23, no. 2, pp. 259-275, April. 2014.
[6] T. Bourouina, H. Fujita, G. Reyne, and M. E. Motamedi, "Optical scanning," in Micro-Opto-Electro-Mechanical Systems, M. E. Motamedi, Ed. Bellingham, WA, USA: SPIE, pp. 323–367, 2005.
[7] D. W. Wine, M. P. Helsel, L. Jenkins, H. Urey, and T. D. Osborn, "Performance of a biaxial MEMS-based scanner for micro display applications," Proc. SPIE, vol. 4178, pp. 186–196, August. 2000.
[8] L. J. Hornbeck, "The DMD projection display chip: A MEMS-based technology, " MRS Bull., vol. 26, no. 4, pp. 325–327, April. 2001.
[9] P. F. Van Kessel, L. J. Hornbeck, R. Meier, and M. R. Douglass, "A MEMS-based Projection Display," in Proc. of the IEEE Integrated Sensors, Microactuators, and Microsystems (MEMS), vol. 86, no. 8, pp. 1687–1704, August. 1998.
[10] U. Baran, W. Davis, S. Holmström, D. Brown, J. Sharma, S. Gokce, et al., "Linear-stiffness rotary MEMS stage, " J. Microelectromech. Syst., vol. 21, no. 3, pp. 514–516, May. 2012.
[11] W. C. Tang, T. C. H. Nguyen, M. W. Judy, and R. T. Howe, "Electrostatic-comb drive of lateral polysilicon resonators, " Sens. Actuators A, Phys., vol. 21, no. 1, pp. 328–331, February. 1990.
[12] A. Selvakumar, K. Najafi, W. H. Juan, and S. Pang, "Vertical comb array microactuators, " in Proc. IEEE MEMS, Amsterdam, The Netherlands, pp. 43–48, January, 1995.
[13] H. Schenk, P. Durr, D. Kunze, H. Laher, and H. Kiick, "An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes, " IEEE MEMS Pro., vol. 13, pp. 473-478, 2000.
[14] K. Uchino, "Piezoelectric actuators 2006," J. Electroceram., vol. 20, pp. 301–311, July. 2008.
[15] S. Desai, A. Netravali, and M. Thompson, "Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS)," J. Micromech. Microeng., vol. 16, no. 7, pp. 1403–1407, June. 2006.
[16] Y. Hishinuma, Y. Li, J. Birkmeyer, T. Fujii, T. Naono, and T. Arakawa, "High performance sputtered PZT film for MEMS applications," in Proc. NSTI Nanotechnol. Conf., vol. 2. Santa Clara, CA, USA, pp. 137–140, 2012.
[17] M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, "A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display," in Proc. IEEE/LEOS Int. Conf. Opt. MEMS Appl. Conf., Big Sky, MT, USA, pp. 25–26, August. 2006.
[18] R. S. Fearing, "Powering 3 dimensional microrobots: Power density limitations," in Proc. Tut. Micro Mech. Micro Robot., ICRA, vol. 98, pp. 1–15, September. 1998.
[19] M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, " A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display," in Proc. IEEE/LEOS Int. Conf. Opt. MEMS, pp. 25–26 , Aug. 2006.
[20] J. W. Judy, R. S. Muller, Senior , and H. H. Zappe, " Magnetic microactuation of polysilicon flexure structures," Journal of Microelectromechanical Systems, vol. 4, NO. 4, pp. 162-169, December. 1995.
[21] Y. Okano, Y. Hirabayashi, "Magnetically actuated micromirror and measurement system for motion characteristics using specular reflection," IEEE Journal on Selected Topics in Quantum Electronic., vol. 8, pp. 19-25, February. 2002.
[22] N. Asada, H. Matsuki, K. Minami, M. Esashi , "Silicon micromachined two-dimensional galvano optical scanner," IEEE Transactions on Magnetics, vol. 30, pp. 4647-4649, November. 1994.
[23] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague , "Two axis electromagnetic microscanner for high resolution displays," Journal of Microelectromechanical Systems, Vol. 15, no. 4, August. 2006.
[24] C. Ji, S.H. Ahn, K.C. Song, H.-K. Yoon, M. Choi ,S.C. Kim, and J. U. Bu, "Dual-axis electromagnetic scanning micromirror," MEMS, Istanbul,Turkey, 22-26, January. 2006.
[25] C. L. Hung, Y. H. Lai, T. W. Lin, S. G. Fu, S. C. Lu, " An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display," Sensors and Actuators A: Physical, Vol. 222, 2015.
[26] C. Drabe, D. Kallweit, A. Dreyhaupt, J. Grahmann, H. Schenk, W. Davis, " Bi-resonant scanning mirror with piezo-resistive position sensor for WVGA laser projection systems,” Proc. of SPIE, vol. 825209, 2012.
[27] T. Tuma, J. Lygeros, V Kartik, A. Sebastian, and A. Pantazi, "High-speed multi resolution scanning probe microscopy based on Lissajous scan , trajectories, " 6th IFAC Symposium on Mechatronic Systems, 2013.
[28] U. Hofmann, M. Oldsen, H.J. Quenzer, J. Janes, M. Heller, M. Weiss, G Fakas
, L. Ratzmann, E. Marchetti, F. D’Ascoli, M. Melani, L. Bacciarelli, E. Volpi, F. Battini, L. Mostardini, F. Sechi, M. De Marinis, and B. Wagner, "Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays," Proc. of SPIE , MOEMS and Miniaturized Systems VII ,vol. 6887, 2008.
[29] G. B. Airy, "On the diffraction of an object-glass with circular aperture," Transactions of the Cambridge Philosophical Society, Vol. 5, pp. 283-291, 1835.
[30] H. Urey, D. W. Wine, and T. D. Osborn, "Optical performance requirements for MEMS-scanner based microdisplays," Proc. SPIE, vol. 4178, pp. 176-185, 2000.
[31] H. Urey, "High performance resonant MEMS scanners for display and imaging applications," in Optomechatronic micro/nano components, devices, and systems conference, Proc. SPIE, Vol. 5604, Philadelphia, Pennsylvania, October. 2004.
[32] H. Urey, "Torsional MEMS scanner design for high-resolution display systems," in Optical Scanning II, Proc. SPIE Vol. 4773, pp. 27-37 Seattle, Washington, July. 2002.
[33] J. Verd , A. Uranga, G. Abadal, J. L. Teva, F. Torres, J. L ´opez, F. P ´erez-Murano, J. Esteve, and N. Barniol , "Monolithic CMOS MEMS oscillator circuit for sensing in the attogram range," Electron Device Letters, vol. 29, pp. 146-148, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *