帳號:guest(18.118.151.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳泰邑
作者(外文):Chen, Tai Yi
論文名稱(中文):V頻段功率放大器設計暨多級適應性偏壓設計
論文名稱(外文):Design of V-band Power Amplifiers with Multi-stage Adaptive Biasing Control
指導教授(中文):劉怡君
指導教授(外文):Liu, Yi Chun
口試委員(中文):徐碩鴻
郭建男
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063543
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:114
中文關鍵詞:功率放大器V頻段適應性偏壓功率結合器
外文關鍵詞:Power amplifierV-bandAdaptive biasingPower combining
相關次數:
  • 推薦推薦:0
  • 點閱點閱:268
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著資訊及科技發展爆炸性的進步,使用者個人資料的安全逐漸受到了重視;其中相關的協定,由電機電子工程師學會(IEEE)制定了IEEE802.15等短距離通訊之相關協定(WLAN/WPAN),60-GHz系統應用憑藉著先天優勢近年來吸引了許多學界與業界的關注與研究。功率放大器由於是將小訊號放大至大訊號並發射至空氣介質當中,所以功率、線性度以及效率都是其關注的規格;隨著操作頻率的提升,功率放大器的設計越來越難。
此論文中探討了三個V頻段的功率放大器,並由台積電90奈米製程實現了其中兩個功率放大器。第一個設計是探討傳統適應性偏壓與本文所提之多級適應性偏壓之差異性;模擬的結果可以發現在小功率之功率附加效率相較於傳統適應性偏壓有明顯的提升。第二個設計主要是以第一個設計為基準,將多級適應性偏壓應用於第二的個設計,並提出適合的適應性偏壓電路;第二個設計量測之線性功率增益可達17.1 dB且最高功率附加效率可達16.1%。第三個設計是為了提升整體的輸出功率,探討了數個功率結合的方法與文獻後採取了變壓器之設計;量測之結果線性增益可達13.4 dB、輸出飽和功率可達13.66 dBm、最大功率附加效率可達10.16%,在1 dB壓縮點下,輸出功率達11.6 dBm,功率附加效率達8.3%。
The secured short-range communication, such as IEEE 802.15 particularly for personal area network (PANs), draws great attentions recently. 60-GHz applications are exploited since this spectrum experiences strong attenuation in the air that makes the wireless local area network (WLAN) and wireless personal area network (WPAN) more secured. Among the millimeter-wave integrated circuits, power amplifiers are the most starving and difficult to design due to its large-signal operation and non-linearity by nature.
In this thesis, three V-band power amplifiers (PAs) are proposed and two of them (work B and C) are implemented by TSMC 90-nm 1P9M (GUTM) CMOS process. The first design (work A) presents one new idea of multi-stage adaptive biasing technique that is different from conventional adaptive biasing scheme on power stage and this technique focuses more on the enhancement in the back-off efficiency verified in simulations. Based on the first design, the new adaptive biasing technique is realized in work B. It achieves a power gain of 17.1 dB, an output 1-dB compression point (OP1dB) of 6.1 dBm, and a maximum power-added-efficiency (PAE) of 16.1% at 48 GHz. To further enhance the delivered output power, the last work (work C) combines the proposed adaptive biasing circuits and transformer-based power combining technique. Work C presents a linear gain of 13.4 dB, an output saturation power (Psat) of 13.66 dBm and a peak PAE of 10.16%. At 1-dB compression point, OP1dB and PAE1dB are 11.6 dBm and 8.3%, respectively.
ABSTRACT I
CONTENTS II
LIST OF FIGURES V
LIST OF TABLE XI
CHAPTER 1 INTRODUCTION 1
1.1 Introduction to Millimeter-Wave Applications 1
1.2 WPAN/WLAN 2
1.3 60-GHz Regulations [4] 3
1.4 Thesis Organization 4
CHAPTER 2 OVERVIEW OF POWER AMPLIFIER 6
2.1 Introduction 6
2.2 Important Parameters of Power Amplifier 7
2.2.1 Power 7
2.2.2 Efficiency 8
2.2.3 Linearity 10
2.2.4 Stability 13
2.3 90-nm CMOS Process 15
2.3.1 Active Device 15
2.3.2 Passive Device 22
CHAPTER 3 IMPEDANCE TRANSFORMATION 23
3.1 LC Resonant Matching 23
3.1.1 Basic Inductor 23
3.1.2 On-Chip Inductors 24
3.1.3 Inductors EM 26
3.2 Transformer Matching 29
3.2.1 Basic Transformer 29
3.2.2 Transformer EM 31
3.3 Optimum Impedance of Power Amplifier 42
CHAPTER 4 A V-BAND POWER AMPLIFIER WITH BIASING CONTROL TECHNIQUE 45
4.1 Paper Survey 45
4.1.1 Doherty Technique 45
4.1.2 Dual-mode Technique 46
4.1.3 Adaptive Biasing Technique 47
4.2 Circuit Design 51
4.2.1 Design Flow 51
4.2.2 Active Device Considerations 52
4.2.3 Work A 55
4.2.4 Work B 64
4.3 Simulation and Measurement Results 77
4.3.1 Small-signal Parameters 78
4.3.2 Large-signal Results 81
4.3.3 Linearity, IIP3 82
4.4 Discussion and Conclusion 83
CHAPTER 5 A V-BAND TRANSFORMER-BASED COMBINING POWER AMPLIFIER WITH MULTI-STAGE ADAPTIVE BIASING CONTROL 84
5.1 Paper Survey 84
5.1.1 Wilkinson Combiner 84
5.1.2 Transmission Line Combiner 85
5.1.3 Transformer-based Combiner 86
5.2 Circuit Design 87
5.2.1 Transformer Design 87
5.2.2 Core Circuit 92
5.2.3 Impedance transformation 94
5.3 Simulation and Measurement Results 99
5.3.1 Simulation Results 99
5.3.2 Measurement Results 101
5.4 Discussion and Conclusion 108
CHAPTER 6 CONCLUSION AND FUTURE WORK 110
[1] I. Aoki, S. Kee, D. Rutledge, and A. Hajimiri, “Distributed active transformer-A new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech.(TMTT), vol. 50, no. 1, pp. 316–331, Jan. 2002.
[2] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits (JSSC), vol. 35, no. 9, pp. 1368–1383, Sep. 2000.
[3] A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s,” IEEE J. Solid-State Circuits (JSSC), vol. 33, no. 10, pp. 1470–1481, Oct. 1998.
[4] Bernardo Leite, “Design and modeling of mm-wave integrated transformer in CMOS and BiCMOS technologies,” Universite Sciences et Technologies – Bordeaux I, 2011.
[5] W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. Inst. Radio Eng, vol. 24, no. 9, pp. 1163–1182, Sep. 1936.
[6] V. Camarchia et al., “The Doherty power amplifier: Review of recent solutions and trends,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 63, no. 2, pp. 559–571, Feb. 2015.
[7] M. Iwamoto, A. Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, “An extended Doherty amplifier with high efficiency over a wide power range,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 49, no. 12, pp. 2472–2479, Dec. 2001.
[8] E. Kaymaksut, D. Zhao and P. Reynaert, “Transformer-based Doherty Power Amplifier for mm-Wave Applications in 40-nm CMOS,” IEEE, Trans. Microw. Theory Tech. (TMTT), vol. 63, no. 4, pp. 1186–1192, Apr. 2015.
[9] E. Kaymaksut and P. Reynaert, “Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications,” IEEE J. Solid-State Circuits (JSSC), vol. 47, no. 7, pp. 1659–1671, Jul. 2012.
[10] D. Zhao and P. Reynaert, “A 60-Ghz dual-mode Class AB power amplifier in 40-nm CMOS,” IEEE J. Solid-State Circuits (JSSC), vol. 48, no. 10, pp. 2323–2337, Oct. 2013.
[11] L. Kuang, B. Chi, H. Jia, W. Jia, and Z. Wang, “A 60-GHz CMOS dual-mode power amplifier with efficiency enhancement at low output power,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 4, pp. 352–356, Apr. 2015.
[12] J. Y.-C. Liu, C.-T. Chan, and S. S.-H. Hsu, “A K-band power amplifier with adaptive bias in 90 nm CMOS,” IEEE European Microwave Conference, Oct. 2014, pp. 1376–1379,.
[13] T.-Y. Huang, Y.-H. Lin, and H. Wang, “A K-band adaptive-bias power amplifier with enhanced linearizer using 0.18-um CMOS process,” IEEE MTT-s Microw. Symp., May. 2015, pp. 1–3.
[14] T.-C. Tsai, K.-Y. Kao, and K.-Y. Lin, “A K-band CMOS power amplifier with FET-type adaptive-bias circuit,” IEEE Asia-Pacific Microwave Conference, Nov. 2014, pp. 591–593.
[15] H. Zhang and Q, Xue, “60 GHz CMOS current-combining PA with adaptive back-off PAE enhancement,” IEEE Trans. Circuit Syst. II, Exp. Briefs, 2016.
[16] Y.-H. Hsiao, H.-C. Liao, J.-C. Kao, and H. Wang,” A V-band power amplifier with adaptive bias circuit to save quiescent DC power consumption using 90-nm CMOS technology,” IEEE Asia-Pacific Microwave Conference, Nov. 2014, pp. 157–159.
[17] J. Y.-C. Liu, Q. J. Gu, A. Tang, N.-Y. Wang, and M.-C. F. Chang, “A 60 GHZ tunable output profile power amplifier in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 377–379, Jul. 2011.
[18] D. Perreault, “A new power combining and outphasing modulation system for high-efficiency power amplification,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, Aug. 2011, pp. 1713–1726.
[19] T.-P. Hung, D. Choi, L. Larson, and P. Asbeck, “CMOS outphasing Class-D amplifier with Chireix combiner,” IEEE Microw. Compon. Lett., vol. 17, no. 8, pp. 619–621, 2007.
[20] F. H. Raab et al., “Power amplifiers and transmitters for RF and microwave,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 50, no. 3, pp. 814–826, Mar. 2002.
[21] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits (JSSC), vol. 42, no. 5, pp. 1044–1057, Aug. 2007.
[22] A. M. Niknejad, D. Chowdhury, and J. Chen, “Design of CMOS power amplifiers,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 60, no. 6, pp. 1784–1796, May 2012.
[23] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, and John G.-J. Chern, "A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier," IEEE MTT-S Microwave Symp. Digest, Jun. 2007, pp. 1129–1132.
[24] F. Zhu, W. Hong, and J.-X. Chen, “A 40-50 GHz power amplifier with flat gain response in 90 nm CMOS technology,” IEEE Wireless Symp., Mar. 2014, pp. 1–4.
[25] D. Schwantuschke, P. Brückner, R. Quay, M. Mikulla, O. Ambacher, and I. Kallfass, “A U-band broadband power amplifier MMIC in 100nm AlGaN/GaN HEMT technology,” IEEE European Microwave Conference, Oct. 2012, pp. 1083–1086.
[26] C. Law and A.-V. Pham, “A high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 426–427.
[27] Y.-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C. Kao, and H. Wang, “Millimeter-wave CMOS power amplifiers with high output power and wideband performances,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 61, no. 12, pp. 4520–4533, Dec. 2013
[28] Y.-N. Jen, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 57, no. 7, pp. 1637–1646, Jul. 2009.
[29] J. Oh, B. Ku, and S. Hong, “A 77-GHz CMOS power amplifier with a parallel power combiner based on transmission-line transformer,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 61, no. 7, pp. 2662–2669, Jul. 2013.
[30] Q. J. Gu, Z. Xu, and M.-C. F. Chang, “Two-way current-combining W-band power amplifier in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 60, no. 5, pp. 1365–1374, May 2012.
[31] J.-W. Lai and A. Valdes-Garcia, “A 1 V 17.9 dBm 60 GHz power amplifier in standard 65 nm CMOS,” IEEE Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 424–425.
[32] D. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech. (TMTT), vol. 63, no. 2, pp. 683–690, Feb. 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *