帳號:guest(18.118.189.10)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡行易
作者(外文):Tsai, Hsing I
論文名稱(中文):W頻段轉導提升技術之低雜訊放大器與可調頻接收器前端設計
論文名稱(外文):Design of W-band Gm-boosting Low Noise Amplifiers and Tunable Receiver Front-end
指導教授(中文):劉怡君
指導教授(外文):Liu, Yi Chun
口試委員(中文):徐碩鴻
郭建男
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063521
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:78
中文關鍵詞:高頻低雜訊放大器高頻降頻器高頻接收器前端
外文關鍵詞:RF low noise amplifierRF downconvertion mixerRF receiver front-end
相關次數:
  • 推薦推薦:0
  • 點閱點閱:254
  • 評分評分:*****
  • 下載下載:41
  • 收藏收藏:0
近年來在毫米波的頻段下進行通訊逐漸受到重視,而在毫米波頻段下的W-band (75-110 GHz)因其有較寬的頻寬以及不壅塞的頻譜,且能藉由較小的電路面積來實現,所以成為了通訊頻段的選擇之一。本篇論文提出了一個W-band的低雜訊放大器和兩個W-band的接收器前端電路,使用的製程是TSMC 90nm CMOS 1P9M。
本論文的第一個研究是一個W-band的低雜訊放大器,此低雜訊放大器利用變壓器來進行輸入阻抗匹配,並且使用轉導提升的技術在壘接放大器上。此低雜訊放大器的增益為6.5 dB在89 GHz,3 dB頻寬為86.8-90.9 GHz,1dB輸入壓縮點為-24 dBm,最小的雜訊係數為12 dB,消耗的功率為11.3 mW。
第二個研究是一個由低雜訊放大器和可調頻率的降頻器所組成的W-band接收器前端電路,低雜訊放大器的第一級是共源極放大器加上源極退化電感,第二級是壘接放大器加上轉導提升技術,此種放大器的架構較上一個研究有較好的折衷在增益以及雜訊。此接收器前端電路的模擬結果為變頻增益為13 dB在100 GHz和12 dB在108 GHz,最小的雜訊係數為15 dB,但是量測的變頻增益為-3.5 dB在100 GHz和1 dB在107.5 GHz,最小的雜訊係數為28 dB。增益會差如此多是因為上一個研究的增益也是下降了14 dB,而此設計的低雜訊放大器是類似上一個設計,所以增益下降的原因可能是低雜訊放大器增益過低所導致的,而此接收地前端電路的1dB輸入壓縮點為-11.6 dBm,功率消耗為113.4 mW。
第三個研究也是一個可調頻的W-band接收器前端電路,這個研究再度改良了低雜訊放大器的設計,此低雜訊放大器是單端輸入雙端輸出,第一級也是共源極放大器加上源極退化電感,接這使用變壓器將單端訊號轉為雙端,然後在差動級使用交叉耦合電容來提升增益,而在降頻器的部分則是使用雙平衡的降頻器。此接收器前端電路模擬的變頻增益為19.7 dB在96 GHz和20.8 dB在103 GHz,最小的雜訊係數為13.3 dB,1dB輸入壓縮點為-11 dBm,功率消耗為122.4 mW。
In recent years, there has been an increasing interest in mm-wave communication. W-band (75-110 GHz) wireless system is a potential candidate due to its wider bandwidth, less congested spectrum and smaller circuit. In this thesis, a W-band low noise amplifier (LNA) and two W-band receiver front-ends in the TSMC 90nm CMOS 1P9M process are presented.
The first design is a W-band LNA with a shunt-series transformer feedback at the input and gm-boosting technique is used in the following cascode stage. The LNA has a measured gain of 6.5 dB at 89 GHz, a 3-dB bandwidth of 86.8-90.9 GHz, a minimum noise figure of 12 dB, an input compression point of -24 dBm, and the power consumption is 11.3 mW.
The second design consists of an improved LNA of the first one and a tunable downconversion mixer to realize a tunable W-band receiver front-end. The first stage of LNA is a common source stage with inductive degeneration and second stage of the LNA is a cascode stage with gm-boosting technique. This topology has smaller noise measure than the previous work, which means it has better trade-off between gain and noise. From simulation, this work has a conversion gain of 13 dB at 100 GHz and 12 dB at 108 GHz, and a minimum noise figure of 15 dB. However, the conversion gain drop to -3.5 dB at 100 GHz and 1 dB at 107.5 GHz, and the minimum noise figure is 28 dB. It is because the gain of the LNA in the previous work drops by 14 dB and the LNA in this work is based on the previous work, the discrepancy between the simulated and measured results can be attributed to the lower gain of the LNA. Other specifications of the receiver front-end include an input compression point of -11.6 dBm, and a power consumption of 113.4 mW.
The third work is another tunable W-band receiver front-end. This work further improves the LNA. This LNA has a single-ended input differential outputs. The common source stage with inductive degeneration is used and an on-chip balun converts the single-ended signal to differential ones. In the differential stage, a cross-coupling capacitance is added to increase the gain. The differential outputs of LNA are connected to transformers that have current gain and these transformers coupled the signal to a double-balanced mixer. The simulated conversion gain is 19.7 dB at 96 GHz and 20.8 at 103 GHz. The minimum noise figure is 13.3 dB, and input compression point of -11 dBm with a power consumption of 122.4 mW.
ABSTRACT II
摘要 IV
ACKNOWLEDGEMENT VI
CONTENTS VII
LIST OF FIGURES X
LIST OF TABLE XIV
CHAPTER 1 INTRODUCTION 1
1.1 Introduction to CMOS Technology Trends and W-band Applications 1
1.2 Introduction to Receiver Front-end 2
1.3 Thesis Organization 4
CHAPTER 2 FUNDAMENTALS OF LOW NOISE AMPLIFIER AND MIXER 5
2.1 Basics Concepts in Low Noise Amplifier Design 5
2.1.1 Gain 5
2.1.2 Noise 6
2.1.3 Linearity 8
2.1.4 Stability 11
2.2 Basics Concepts in Downconversion Design 11
2.2.1 Conversion Gain 11
2.2.2 Mixer Noise Figure 12
CHAPTER 3 A HIGH GAIN LOW NOISE AMPLIFIER WITH LOW POWER CONSUMPTION FOR W-BAND APPLICATIONS 15
3.1 Design Analysis 15
3.1.1 Basics of Common Source Input Matching 15
3.1.2 Common Source with Source Inductive Degeneration 16
3.1.3 Shunt-Series Transformer Feedback 19
3.2 Transformer-Coupled gm-Boosting 25
3.3 Circuit Schematic 27
3.4 Simulation and Measurement Results 28
3.4.1 Simulation and Measurement Results 28
3.4.2 Discussion 33
CHAPTER 4 A TUNABLE RECEIVER FRONT-END FOR W-BAND APPLICATIONS 35
4.1 The Low Noise Amplifier of the Receiver Front-end 35
4.1.1 Design of the LNA 36
4.2 The Active Mixer of the Receiver Front-end 42
4.2.1 Design of the Active Mixer 42
4.2.2 Tunable Load 45
4.3 Circuit Schematic 48
4.4 Simulation and Measurement Results 51
CHAPTER 5 A TUNABLE RECEIVER FRONT-END WITH GM-BOOSTING TECHNIQUE FOR W-BAND APPLICATIONS 58
5.1 The Single-ended Input and Differential Outputs LNA of the Receiver Front-end 58
5.1.1 Differential Topology with the Cross-
coupled Capacitance 58
5.2 The Double-balanced Gilbert-type Mixer of the Receiver Front-end 61
5.2.1 Comparison Between Single-balanced Mixer
and Double-balanced Mixer 61
5.2.2 The Mechanism of LO-IF Feed Through
Cancelling 63
5.3 Circuit Schematic 66
5.4 Simulation and Measurement Results 67
5.4.1 Simulation Results 68
CHAPTER 6 CONCLUSION AND FUTURE WORK 74
REFERENCES 76
[1] ITRS. Radio Frequency and Analog/Mixed-Signal Technologies for Wireless Communications. 2007.
[2] C. H. Doan, S. Emami, A. M. Niknejad and R. W. Brodersen, "Millimeter-wave CMOS design," IEEE J. Solid-State Circuits (JSSC), vol. 40, no. 1, pp. 144-155, Jan. 2005.
[3] Y.-S. Jiang, Z.-M. Tsai, J.-H. Tsai, H.-T. Chen, and H. Wang, “A 86 to 108 GHz amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 124–126, Feb. 2008.
[4] Ning Zhang, Chih-Ming Hung, Kenneth, K. O., “80-GHz Tuned Amplifier in Bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 121-123, Feb. 2008.
[5] D. Sandstrom, M. Varonen, M. Karkkainen, and K. Halonen, “W-band CMOS amplifiers achieving +10dBm saturated output power and 7.5dB NF,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 486 - 487.
[6] Huei Wang, Kwo-Wei Chang, D. C. W. Lo and Gee Sam Dow, “W-band MMIC-based component development and applications,” Frequency Control Symposium, 1995. 49th., pp. 190-204, Jun. 1995.
[7] B. Razavi, “Noise” in Design of Analog CMOS Integrated Circuits, 2nd ed., Boston: McGraw-Hill, 2001, pp. 209-224.
[8] A. V. Der Ziel, "Thermal Noise in Field-Effect Transistors, “Proceedings of the IRE”, vol. 50, no. 8, Aug. 1962, pp. 1808-1812.
[9] D. J. Allstot, Xiaoyong Li and S. Shekhar, "Design considerations for CMOS low-noise amplifiers," Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE, pp. 97-100, Jun. 2004.
[10] M. Khanpour, K. W. Tang, P. Garcia and S. P. Voinigescu, "A Wideband W-Band Receiver Front-End in 65-nm CMOS," IEEE J. Solid-State Circuits (JSSC), vol. 43, no. 8, pp. 1717-1730, Aug. 2008.
[11] S. Guo et al., "54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB gain using transformer feedback Gm-boosting technique," Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian, KaoHsiung, 2014, pp. 185-188.
[12] H. Samavati, H. R. Rategh, and T. H. Lee, “A 5-GHz CMOS wireless LAN receiver front-end,” IEEE J. Solid-State Circuits (JSSC), vol. 35, no. 5, pp. 765–772, May 2000.
[13] B. Heydari, M. Bohsali, E. Adabi, and A. Niknejad, “Low-power mm-wave components up to 104 GHz in 90 nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 200–597.
[14] Y.-S. Jiang, Z.-M. Tsai, J.-H. Tsai, H.-T. Chen, and H. Wang, “ A 86 to 108 GHz amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp.124–126, Feb. 2008.
[15] Chien-Hsiung Liao; Cheng-Huang Hsieh; Hu, R.; Dow-Chih Niu; Yu-Shao Shiao, "W-band 90nm CMOS LNA design," 2012 Asia Pacific Microwave Conf. Proceedings, Kaohsiung, Dec. 2012, pp. 430-432.
[16] G. Gonzalez, Microwave Transistor Amplifiers: Analysis & Design. New Jersey: Prentice Hall, 1996, pp 325-330.
[17] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits (JSSC), vol. 42, no. 5, pp. 1044–1057, May 2007.
[18] B. Razavi, “Mixers,” in RF Microelectronics, 2nd ed., New Jersey: Prentice Hall, 2012, pp. 337-425.
[19] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers: a simple physical model," IEEE J. of Solid-State Circuits (JSSC), vol. 35, no. 1, pp. 15-25, Jan. 2000.
[20] Boyu Hu, Xiaopeng Yu and Lenian He, “A Group-Selected and Gain Controllable CMOS Active Mixer for UWB Applications”, 2010 IEEE International Conf. Ultra-Wideband, Nanjing, Sept. 2010, pp. 1-4.
[21] Jeng-Han Tsai, Hong-Yuan Yang, Tian-Wei Huang, and Huei Wang, “A 30-100-GHz wideband sub-harmonic active mixer in 90-nm CMOS technology," IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554-556, Aug. 2008.
[22] F. Zhang, E. Skafidas, and W. Shieh, “A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130 nm CMOS,” 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, June. 2007, pp. 141-144.
[23] B. Razavi, "Design of Millimeter-Wave CMOS Radios: A Tutorial," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 1, pp. 4-16, Jan. 2009.
[24] J. H. J. Yu, C. H. Liao, C. H. Hsieh, R. Hu and D. C. Niu, "77–110GHz 90nm-CMOS receiver design," 2013 Asia-Pacific Microwave Conf. Proceedings (APMC), Seoul, Nov. 2013, pp. 233-235.
[25] H. Y. Su, R. Hu and C. Y. Wu, "A 78-102 GHz Front-End Receiver in 90 nm CMOS Technology," Microwave and Wireless Components Letters, vol.21, no.9, pp.489-491, Sept. 2011.
[26] Khanpour, M.; Tang, K.W.; Garcia, P.; Voinigescu, S.P., "A Wideband W-Band Receiver Front-End in 65-nm CMOS," IEEE J. Solid-State Circuits (JSSC), vol.43, no.8, pp.1717-1730, Aug. 2008.
[27] Laskin, E.; Khanpour, M.; Aroca, R.; Tang, K.W.; Garcia, P.; Voinigescu, S.P., "A 95GHz Receiver with Fundamental-Frequency VCO and Static Frequency Divider in 65nm Digital CMOS," IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp.180-605.
[28] C. Weyers, P. Mayr, J. W. Kunze and U. Langmann, "A 22.3dB Voltage Gain 6.1dB NF 60GHz LNA in 65nm CMOS with Differential Output," 2008 IEEE International Solid-State Circuits Conf. - Digest of Technical Papers, San Francisco, CA, 2008, pp. 192-606.
[29] G. Nikandish and A. Medi, "Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers," IEEE Trans. Microw. Theory Tech. (TMTT), vol. 63, no. 2, pp. 441-448, Feb. 2015.
[30] H. G. Han, D. H. Jung and T. W. Kim, "A 2.88 mW +9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback," IEEE Trans. Microw. Theory Tech. (TMTT), vol. 63, no. 3, pp. 1019-1025, Mar. 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *