帳號:guest(13.58.243.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅培哲
作者(外文):Pei Jhe Lo
論文名稱(中文):有機金屬濺鍍製程運用於銅銦鎵硒太陽電池製備之研究
論文名稱(外文):The study of metal-organic-sputtering process for fabrication of Cu(In,Ga)Se2 solar cell
指導教授(中文):徐永珍
黃惠良
指導教授(外文):Yung Jane Hsu
Huey Liang Hwang
口試委員(中文):翁恆義
蕭錫練
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063518
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:銅銦鎵硒太陽電池硒化製程濺鍍製程
外文關鍵詞:CIGS solar cellselenizationsputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:136
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要藉由製程機台的設計與改裝,實踐有機金屬濺鍍製程,利用RF-Sputter沉積Cu-In-Ga( 44.70 : 38.12 : 17.14 at%)合金前驅薄膜,本研究利用EDS與拉曼光譜證實了外接攜出三甲基鎵氣體流量與薄膜中鎵元素的調整的正相關,接著利用固態硒粉加熱後進行硒化,過程中可以藉由改變升溫速率、溫度、持溫時間與硒粉量優化CIGS層,再利用化學浴沉積一層具透光性與覆蓋性的CdS,進而得到最佳化的主動層;此外,在我們的研究中,我們對三元前驅層硒化與四元薄膜退火進行比較,其中以三元前驅層硒化後的結構與特性上較為良好;最後在太陽電池的製作,我們以SLG/Mo/CIGS/CdS/i-ZnO/AZO/Al的結構去堆疊,其中硒化製程以500℃鋒值溫度、40分鐘持溫時間與50mg的硒粉得到最佳化太陽電池,其開路電壓(Voc)為0.16 V、短路電流(Jsc)為22.90 mA/cm2、填充因子(F.F)為0.29,效率為1.018 %。
In this study , we design the new process for fabrication of Cu(In,Ga)Se2 solar cell to prove the assumption of the metal-organic-sputtering process . Firstly , we use RF sputter to deposit the CuInGa thin film which can control the components of Ga as the function of TMGa flow with measurement of EDS and the Raman spectrum and then and carry out the selenization process with selenium powder by furnace . And then , we can optimize the selenization process by the parameters , such as rate of heating , top temperature , duration time and amount of selenium powder. Furthermore , we obtain the CdS buffer layer with good coverage and high transmittance by a chemical bath deposition way . In this study , we also compare the difference between CuInGa and Cu(In,Ga)Se2 thin film by different annealing process . And we find that , the selenized CuInGa thin film is better than the other on micro-structure . Finally , we fabricate the Cu(In,Ga)Se2 solar cell with SLG / Mo / CIGS /CdS / i-ZnO / AZO / Al structure . In selenization process , we optimize the parameters and show the efficiency of 1.018 % with an open circuit voltage of 0.16 V , short circuit current of 22.90 mA/cm2 and fill factor of 0.29 as the best cell in our study .
1-1 前言---------------------------------1
1-2 太陽電池分類--------------------------2
1-3 光的二象性----------------------------3
1-4 能帶的形成----------------------------3
1-5 太陽電池-結構與操作原理----------------4
1-5-1 開路電壓--------------------------7
1-5-2 短路電流--------------------------7
1-5-3 填充因子--------------------------8
1-5-4 轉換效率--------------------------8
1-6 太陽電池-等效電路----------------------8
1-7 太陽光譜------------------------------9
1-8 研究動機-----------------------------11

2-1 CIGS太陽電池介紹----------------------13
2-2 CIGS太陽電池探討----------------------13
2-2-1 Cu(In,Ga)Se2特性-----------------13
2-2-2 鎵元素對CuIn1-XGaXSe2的影響-------14
2-2-3 CIGS太陽電池結構------------------16
2-3 各層薄膜特性--------------------------17
2-3-1 鈉基板---------------------------17
2-3-2 背電極Mo-------------------------17
2-3-3 主吸收層-------------------------17
2-3-4 緩衝層---------------------------18
2-3-5 本質透光層i-ZnO/透明導電層AZO------18
2-3-6 鋁電極 --------------------------18

3-1 實驗流程圖---------------------------19
3-1-1 濺鍍製程-------------------------20
3-1-2 退火製程-------------------------21
3-1-3 鈉玻璃基板Clean步驟---------------21
3-1-4 鉬電極的製備----------------------22
3-1-5 主吸收層製備----------------------22
3-1-6 緩衝層製備------------------------22
3-1-7 透光層與導電層的製備---------------23
3-2 實驗儀器------------------------------24
3-2-1射頻真空濺鍍系統--------------------25
3-2-2 真空濺鍍系統與TMGa流量控制器--------25
3-2-3 硒化爐管--------------------------26
3-3 量測儀器------------------------------27
3-3-1 四點探針系統----------------------27
3-3-2 X光繞射儀------------------------28
3-3-3 SEM場發式電子顯微鏡---------------29
3-3-4 紫外光/可見光光譜儀---------------30
3-3-5太陽光模擬器----------------------30

4-1 機台改裝後之工作情況------------------31
4-2 鉬電極-電性與物性結果-----------------32
4-3 CIG前驅層與CIGS薄膜------------------37
4-4 退火與硒化製程之討論------------------47
4-5 CdS層製備與討論----------------------56
4-6 透光層(i-ZnO/AZO)之製備與討論---------60
4-7 元件結果與討論------------------------65

5-1 研究結論-----------------------------71
5-2 未來展望-----------------------------72

參考文獻---------------------------------73
[1] D.J. Hoffman, A Parametric Assessment of the Mission Applicability of Thin-Film Solar Arrays, IEEE, Vol. 1, pp. 670-680, 2000.
[2] L. M. Woods, A. Kalla, D. Gonzalez, and R. Ribelin, Wide-bandgap CIASthin-film photovoltaics with transparent back contacts for next generation single and multi-junction devices, Material Science and Engineering: B, Vol. 116, pp. 297-302, 2005.
[3] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd editionJohn-Wiley & Sons, Ch4, p.89 (2001).
[4] H. J. Möller, Semiconductors for solar cells. Artech House, Ch2,p. 21-23 (1993).
[5] http://conceptselectronics.com/wp-content/uploads/2014/04/PN-junction
[6] Air Mass -PVEducation/ http://pveducation.org/pvcdrom
[7] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W. N. Shafaman CuIn1-xAlxSe2thin films and solar cells, Journal of Applied Physics 91 (2002) 10153-10156.
[8]太陽電池 Solar Cells,黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀, 李世昌,林唯芳,五南出版社,2014.
[9]黃將才,”以兩段硒化製程製備銅銦鋁硒太陽能電池之研究”,國立清華大學電子工程研究論文,2015.
[10] European Roadmap for PV R&D. European Commission Joint Research Center, 2004 EUR 21087EN.
[11] KRI Report No. 8: Solar Cells, February 2005.
[12]http://fresnostate.digication.com/csu_fresno_and_pelco_solar_power_station
[13] http://physics.stackexchange.com/questions/why-does-band-gap-form-for-silicon
[14] U.Rau, M. Schmidt,A. Jasenek,G. Hanna,H.W. Schock , Solar Energy Materials & Solar Cells,67,137-143(2001)
[15]https://en.wikipedia.org/wiki/Copper_indium_gallium_selenide
[16] Ju-Heon Yoon, Tae-Yeon Seong and Jeung-hyun Jeong , Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells
[17] Zhao-Hui Li, Eou-Sik Cho, Sang Jik Kwon Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells
[18] Sheng-Hui Chen,Wei-Ting Lin, Shih-Hao Chan, Photoluminescence Analysis of CdS/CIGS Interfacesin CIGS Solar Cells
[19] Ming-Ru Yang, Ding-Wen Chiou, Hsien-Te Cheng , Effects of substrate temperature on the properties of transparent conducting AZO thin films and CIGS solar cells
[20]https://en.wikipedia.org/wiki/Sputter_deposition#/media/File:Sputtering.gif
[21] Y.H. Huang, Study of microstructures and electro-optic properties on sputtering AZO with metal electrode thin films, Master Thesis, I-Shou University, 2012.
[22] F. M. Smits, Measurement of sheet resistivities with the four-point probe, Bell System Technical Journal,Vol.37, p711-p718,1958
[23]許淇銘,”研究CIAS太陽電池的硒化製程”,國立清華大學電子工程研究論 文,2015.
[24] http://chemwiki.ucdavis.edu/diffraction/Powder_X-ray_Diffraction
[25]http://www.ammrf.org.au/myscope/sem/practice/principles/layout.php
[26] A collection of resources for the photovoltaic educator. http://pveducation.org/
[27] Zhao-Hui Li, Eou-Sik Cho, Sang Jik Kwon Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells.
[28] John H. Scofield A. Duda, and D. Albin. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells.
[29] 邱稜翔,“優化硒化製程在製備銅銦鋁硒太陽電池之研究”,國立清華大學 電子工程研究所論文,2013.
[30] In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess.
[31] 黃哲瑄“以濺鍍/無毒硒化製程製作銅銦鎵硒薄膜太陽能電池”,國立交通大學光電研究所論文.
[32] 洪嘉黛“CuInGa合金濺鍍以及硒化製備之CIGS薄膜”,國立清華大學材料工程研究所論文.
[33] K Manickathai, S Kasi Viswanathan, MAlagar,Synthesis and characterization of CdO and CdS nanoparticles.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *