帳號:guest(18.118.253.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖矩鋒
作者(外文):Liao, Chu Feng
論文名稱(中文):相容於邏輯製程之淺溝槽絕緣邊界電阻式記憶體
論文名稱(外文):A Novel CMOS Logic Compatible Shallow Trench Isolation Sidewall edge Resistive Random Access Memory
指導教授(中文):金雅琴
指導教授(外文):King, Ya Chin
口試委員(中文):蔡銘進
林崇榮
口試委員(外文):Tsai, Ming Jinn
Lin, Chrong Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063514
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:電阻式記憶體淺溝槽絕緣
外文關鍵詞:RRAMShallow Trench Isolation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在未來,物聯網將實現世界數位化,所有物品將以網路連線,人類的生活方式將徹底改變。隨著智慧手持產品起飛,產品均以輕薄短小為發展趨勢,而PIM(Process-in-Memory, PIM)技術最具代表性,其為把記憶體嵌入至中央處理去中,一方面可大幅提升處理速度,也減少電力消耗,PIM技術將成為打開物聯網與巨量分析時代大門之鑰,但龐大的資料必須要有相對應的儲存媒介當作資料的運轉與儲存使用。目前市面上的非揮發性記憶體皆屬於電荷儲存式的快閃記憶體,但隨著半導體的製程微縮,浮動閘極中儲存的電荷會越來越少,代表處存與否之狀態會越來越接近,如果快閃記憶體達到物理極限便無法正常運作。因此,新穎非揮發性記憶體開發格外重要。
本論文以40奈米互補式金氧半邏輯製成實現一淺溝槽絕緣電阻式記憶體(Shallow Trench Isolation Sidewall Resistive Random Access Memory ,STI Sidewall Edge RRAM),此記憶體在製程上無需額外光罩且最小記憶單元佈局面積極小。STI Sidewall Edge RRAM控制轉換厚度簡單且可精準,且此元件變異將隨著製程微縮變得更小,此記憶體在直流掃描(DC Sweep)與交流脈衝(AC pulse)操作中具有低功率消耗且高速操作特性,利用ISPP演算法可使記憶單元耐久度達一百萬次設置/重置循環測試,儲存資料以150oC高溫連續烘烤可穩定保存資料超過一百萬秒,最後以連續一萬秒讀取測試不管是高阻態或是低阻態並部會資料失真,可知STI Sidewall Edge RRAM既有良好的操作特性也含良好的資料保存能力。
In the future, digitized world can be achieved by IOT. All item will be network links, human life may be changed. With the wisdom handheld products takeoff, products are slim and light as a trend and Process-in-Memory , PIM is the most representative technology to make the memory embedded in CPU. On the one hand it can enhance the operation speed, on the other hand it can reduce the power consumption. This technology might be a key to the generation of IOT and big data. Large information must have a corresponding storage media for operation and usage. Currently, the main NVM is flash on the market. As semiconductor manufacturing process scales, the charge in the floating gate decreases .The storage state will become difficult to identify. Flash may encounter the physical limitation that can’t operate and use normally. Therefore, new NVM exploitation is important nowadays.
Based on 40nm COMS logic process, we realized Shallow trench Isolation Sidewall Edge Resistive Random Access Memory(STI Sidewall Edge RRAM).No additional process masks and ultra-small size is the characteristic of this memory. We can control the RRAM film easily and precisely. The variation of this cell may decrease with process scaling. By DC and AC operation, this memory has the feature of low power consumption and high program speed. Incremental Step Pulse Programming(ISPP) Algorithm can be used to promote the endurance to make this memory achieve 1000K Set/Reset cycles. Data stored show stability under 150oC baking over a period of 1000K seconds and it can endure 10K seconds continuously reading that guarantee STI Sidewall Edge RRAM unit has no reliability concern. STI Sidewall Edge RRAM has great operation feature and data retention ability.
內文目錄 vii
附圖目錄 ix
附表目錄 xi
第一章 序論 1
1.1前言: 1
1.2論文大綱 3
第二章 電阻式記憶體回顧與操作特性 10
2.1電阻式記憶體介紹 10
(a)初始化 10
(b)電阻轉換 10
(c)電阻值轉換模型 12
2.2電阻式記憶體技術 13
2.3 小結 15
第三章 淺溝槽絕緣電阻式記憶體設計概念 28
3.1淺溝槽絕緣結構介紹 28
3.2淺溝槽絕緣電阻式記憶體製程流程與元件架構 29
3.3淺溝槽絕緣電阻式記憶體陣列架構 30
3.4小結 30
第四章 淺溝槽絕緣電阻式記憶體量測分析 38
4.1量測環境介紹 38
4.2電阻式薄膜厚度與元件變異探討 39
4.3元件特性及操作最佳化 39
4.4逐步增加脈衝應用於元件操作 41
4.5可靠度分析 42
(a)連續讀取干擾 42
(b)資料保存性 42
(c)陣列干擾分析 43
4.6 小結 43
第五章 總結 64
[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,” Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar. 1995.
[2] P. Stanley-Marbell, V. C. Cabezas, and R. P. Luijten, “Pinned to the walls—Impact of packaging and application properties on the memory and power walls,” in Proc. Int. Symp. Low Power Electron. Design, Aug. 2011, pp. 51–56.
[3] D. Oh, S. Chang, C. Madden, J.-H. Kim, R. Schmitt, M. Li, C. Ware, B. Leibowitz, Y. Frans, and N. Nguyen, “Design and characterization of a 12.8 GB/s low power differential memory system for mobile applications,” in Proc. IEEE 18th Conf. Electrical Perform. Electron. Packag. Syst., Oct. 2009, pp. 33–36.
[4] A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, and Gabriela Slavcheva, “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Trans. Electronic devices, vol. 50, no. 9, September 2003, pp. 1837-1852.
[5] T. Mizuno, J. Okamura, and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs,” IEEE Trans. Electron Devices, vol. 41, Nov. 1994, pp. 2216–2221.
[6] G. F. Cardinale, C. C. Henderson, J. E. M. Goldsmith, P. J. S. Mangat, J. Cobb, and S. D. Hector, “Demonstration of pattern transfer into sub-10 nm polysilicon line/space features patterned with extreme ultraviolet lithography,” J. Vac. Sci. Technol., vol. B 17, 1999, pp. 2970–2974.
[7] BUCY, J. S., ET AL. The disksim simulation environment version 4.0 reference manual. In Parallel Data Laboratory (2008).
[8] CHANG, L.-P., AND KUO, T.-W. Real-time garbage collection for flash-memory storage systems of real-time embedded systems. ACM Transactions on Embedded Computing Systems 3, 4 (November 2004).
[9] Balla, P.e. and Antoniou, A. (1984), "Low Power Dissipation MOS Ternary Logic Family," IEEE J. Solid-State Circuits, Vol. 19, No. 5, pp. 739-749, Oct.
[10] Heung, A. and Mouftah, H.T. (1985), "Depletionl Enhancement CMOS for a Lower Power Family of Three-valued Logic Circuits," IEEE J. Solid-State Circuits, Vol. 20, No. 2, pp. 609-616, Apr.
[11] J. H. Ahn et al., “Multicore DIMM: an energy efficient memory module with independently controlled DRAMs,” Computer Architecture Letters, 2009.
[12] S. M. Alam et al., “Memory controller and method for interleaving DRAM and MRAM accesses,” US Patent 2012/0 155 160 A1, 6 21, 2012.
[13] E. Ou and S. S. Wong, “Array architecture for a nonvolatile 3-dimensional cross-point resistance-change memory,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2158–2170, Sep. 2011.
[14] S.-S. Sheu et al., “A 5 ns fast write multi-level non-volatile 1 k bits RRAM memory with advance write scheme,” in Symp. VLSI Circuits Dig., 2009, pp. 82–83.
[15] S.-S. Sheu et al., “A 4 Mb embedded SLC resistive-RAM macro with 7.2 ns read-write random-access time and 160 ns MLC-access capability,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2011, pp. 1483–1496.
[16] A. Kawahara et al., “An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 178–185, Jan. 2013.
[17] Y. Y. Chen et al., “Postcycling LRS retention analysis in HfO2/Hf RRAM 1T1R device,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 626–628, May 2013.
[18] Ugo Russo et al., “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Transactions on Electron Device, Vol. 56, no. 2, Feb 2009.
[19] Peng Huang et al., “A Physics-Based Compact Model of Metal-Oxide-Based RRAM DC and AC Operations” IEEE Transactions on Electron Device, Vol. 60, no. 12, DECEMBER 2013.
[20] H.-Y. Chen et al., “HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector,” in Proc. IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., San Francisco, CA, USA, 2012, pp. 497–500.
[21] M. J. Lee, Y. Park, B. S. Kang, S. E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, and I. K. Yoo, “2-stack ID-IR cross-point structure with oxide diodes as switch elements for high density resistance RAM applications”, IEDM Tech. Dig., pp. 771-774, 2007.
[22] X. A. Tran et al., “A self-rectifying AlOy bipolar RRAM with sub-50-µA set/reset current for cross-bar architecture,” IEEE Trans. Electron Devices, vol. 33, no. 10, pp. 1402–1404, Oct. 2012.
[23] Y. H. Tseng, C.-E. Huang, C.-H. Kuo, Y.-D. Chih, and C. J. Lin, “High density and ultra small cell size of contact ReRAM (CR-RAM) in 90 nm CMOS logic technology and circuit,” in IEDM Tech. Dig., Dec. 2009, pp. 1–4.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *