|
[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,” Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar. 1995. [2] P. Stanley-Marbell, V. C. Cabezas, and R. P. Luijten, “Pinned to the walls—Impact of packaging and application properties on the memory and power walls,” in Proc. Int. Symp. Low Power Electron. Design, Aug. 2011, pp. 51–56. [3] D. Oh, S. Chang, C. Madden, J.-H. Kim, R. Schmitt, M. Li, C. Ware, B. Leibowitz, Y. Frans, and N. Nguyen, “Design and characterization of a 12.8 GB/s low power differential memory system for mobile applications,” in Proc. IEEE 18th Conf. Electrical Perform. Electron. Packag. Syst., Oct. 2009, pp. 33–36. [4] A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, and Gabriela Slavcheva, “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Trans. Electronic devices, vol. 50, no. 9, September 2003, pp. 1837-1852. [5] T. Mizuno, J. Okamura, and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs,” IEEE Trans. Electron Devices, vol. 41, Nov. 1994, pp. 2216–2221. [6] G. F. Cardinale, C. C. Henderson, J. E. M. Goldsmith, P. J. S. Mangat, J. Cobb, and S. D. Hector, “Demonstration of pattern transfer into sub-10 nm polysilicon line/space features patterned with extreme ultraviolet lithography,” J. Vac. Sci. Technol., vol. B 17, 1999, pp. 2970–2974. [7] BUCY, J. S., ET AL. The disksim simulation environment version 4.0 reference manual. In Parallel Data Laboratory (2008). [8] CHANG, L.-P., AND KUO, T.-W. Real-time garbage collection for flash-memory storage systems of real-time embedded systems. ACM Transactions on Embedded Computing Systems 3, 4 (November 2004). [9] Balla, P.e. and Antoniou, A. (1984), "Low Power Dissipation MOS Ternary Logic Family," IEEE J. Solid-State Circuits, Vol. 19, No. 5, pp. 739-749, Oct. [10] Heung, A. and Mouftah, H.T. (1985), "Depletionl Enhancement CMOS for a Lower Power Family of Three-valued Logic Circuits," IEEE J. Solid-State Circuits, Vol. 20, No. 2, pp. 609-616, Apr. [11] J. H. Ahn et al., “Multicore DIMM: an energy efficient memory module with independently controlled DRAMs,” Computer Architecture Letters, 2009. [12] S. M. Alam et al., “Memory controller and method for interleaving DRAM and MRAM accesses,” US Patent 2012/0 155 160 A1, 6 21, 2012. [13] E. Ou and S. S. Wong, “Array architecture for a nonvolatile 3-dimensional cross-point resistance-change memory,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2158–2170, Sep. 2011. [14] S.-S. Sheu et al., “A 5 ns fast write multi-level non-volatile 1 k bits RRAM memory with advance write scheme,” in Symp. VLSI Circuits Dig., 2009, pp. 82–83. [15] S.-S. Sheu et al., “A 4 Mb embedded SLC resistive-RAM macro with 7.2 ns read-write random-access time and 160 ns MLC-access capability,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2011, pp. 1483–1496. [16] A. Kawahara et al., “An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 178–185, Jan. 2013. [17] Y. Y. Chen et al., “Postcycling LRS retention analysis in HfO2/Hf RRAM 1T1R device,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 626–628, May 2013. [18] Ugo Russo et al., “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Transactions on Electron Device, Vol. 56, no. 2, Feb 2009. [19] Peng Huang et al., “A Physics-Based Compact Model of Metal-Oxide-Based RRAM DC and AC Operations” IEEE Transactions on Electron Device, Vol. 60, no. 12, DECEMBER 2013. [20] H.-Y. Chen et al., “HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector,” in Proc. IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., San Francisco, CA, USA, 2012, pp. 497–500. [21] M. J. Lee, Y. Park, B. S. Kang, S. E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, and I. K. Yoo, “2-stack ID-IR cross-point structure with oxide diodes as switch elements for high density resistance RAM applications”, IEDM Tech. Dig., pp. 771-774, 2007. [22] X. A. Tran et al., “A self-rectifying AlOy bipolar RRAM with sub-50-µA set/reset current for cross-bar architecture,” IEEE Trans. Electron Devices, vol. 33, no. 10, pp. 1402–1404, Oct. 2012. [23] Y. H. Tseng, C.-E. Huang, C.-H. Kuo, Y.-D. Chih, and C. J. Lin, “High density and ultra small cell size of contact ReRAM (CR-RAM) in 90 nm CMOS logic technology and circuit,” in IEDM Tech. Dig., Dec. 2009, pp. 1–4.
|