|
[1] 林志遠, “電子產品當中不可或缺的時脈元件”
[2] Crystal oscillator frequencies, wikipedia。網址:https://en.wikipedia.org/wiki/Crystal_oscillator_frequencies
[3] Maxim Integrated產品介紹。網址:http://para.maximintegrated.com/en/search.mvp?fam=osc_mod&980=XO
[4] Maxim Integrated產品介紹。網址:http://para.maximintegrated.com/en/search.mvp?fam=siliosc&774=No
[5] B. Razavi, Design of analog CMOS integrated circuits. America: McGraw-Hill, 2001, pp. 361-367, pp. 392, pp. 599
[6] K. Sandaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433–442, Feb. 2006.
[7] Y. H. Chiang, and S. I. Liu, “A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation,” IEEE Tran. Circuits Syst. II, Exp. Briefs, vol. 60, no. 12, pp. 837–841, Dec. 2013.
[8] G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutrì, “A low-voltage low-power voltage reference based on subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 151–154, Jan. 2003.
[9] H.-M. Chuang, K.-B. Thei, S.-F. Tsai, and W.-C. Liu, “Temperature-dependent characteristics of polysilicon and diffused resistors,” IEEE Trans. Electron Devices, vol. 50, no.5, pp. 1413-1415, May 2003.
[10] B. R. Gregoire and U.-K. Moon, “Process-independent resistor temperature-coefficients using series/parallel and parallel/series composite resistors,” in Proc. ISCAS, May 2007, pp. 2826–2829.
[11] 林妤珊, “一個具有精準責任週期的參考振盪器” , 國立清華大學, 電子工程研究所, 碩士論文, 中華民國一百零二年七月
[12] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1150-1158, Jun. 2010.
[13] Donald A. Neamen, Microelectronics circuit analysis and design, Fourth edition. America: McGraw-Hill, 2010, pp. 1100-1103, pp. 1105-1106
[14] C. F. Lee and P. K. T. Mok, “A monolithic current- mode DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no.1, pp. 3-14, Jan. 2004.
[15] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A low-voltage mobility-based frequency reference for crystal-less ULP radios,” IEEE J. Solid-State Circuits, vol.44, no. 7, pp. 2002–2009, Jul. 2009. [16] Y.-H. Lam and S.-J. Kim, “A 16.6μW 32.8MHz monolithic CMOS relaxation oscillator,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2014, pp. 161–164. [17] Z. Xu, W. Wang, N. Ning, W.-M. Lim, Y. Liu, and Q. Yu, “A supply voltage and temperature variation-tolerant relaxation oscillator for biomedical systems based on dynamic threshold and switched resistors,” IEEE Trans. Very Large Scale Integr. (VLSI) Systems, vol. 23, no.4, pp. 786-790, April 2015. [18] J. Wang, L.-G. Wang, X. Liu and J. Zhou, “A 12.77-MHz on-chip relaxation oscillator with digital compensation for loop delay variation,” in Proc. IEEE Asian Solid-State Circuits Conf, pp. 1–4, Nov. 2015.
[19] J. Wang and L.-G. Wang, “A 13.5-MHz relaxation oscillator with ±0.5% temperature stability for RFID application,” IEEE International Symposium. Circuit and Systems, pp. 2431–2434, May. 2016. [20] Y.-K. Tsai and L.-H. Lu, “A 51.3-MHz 21.8-ppm/°C CMOS relaxation oscillator with temperature compensation,” IEEE Trans. Circuit and Systems II, Jun 2016
|