帳號:guest(18.223.171.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭俊佑
作者(外文):Kuo, Chun Yu
論文名稱(中文):應用多晶矽/石墨烯光二極體與MOSFET整合元件於影像感測陣列中
論文名稱(外文):Integrating Poly-silicon/Graphene Photodiode with MOSFET in Image Sensor Array
指導教授(中文):徐永珍
指導教授(外文):Hsu, Yung jane
口試委員(中文):賴宇紳
黃吉成
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063504
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:石墨烯
外文關鍵詞:Graphene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:158
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文將石墨烯/多晶矽光二極體整合於MOSFET元件的閘極端,在不同光強下,石墨烯/多晶矽光二極體會產生相對應的光電壓加諸於閘極上,改變通道電流大小,光訊號可以光電流或光電壓模式輸出。
實驗部分,本論文嘗試將石墨烯材料整合於半導體製程中,以高溫銅金屬催化的方式化學氣相沉積大面積、均勻單層石墨烯,石墨烯會轉移至閘極氧化層上方,並成長多晶矽於石墨烯表面形成閘極感光結構。最終石墨烯光偵測元件會實際應用於8×8影像陣列電路裡。
量測結果顯示,CVD石墨烯成功整合於CMOS半導體製程中,但製程仍有很大的優化空間;石墨烯光偵測器在低照度下會有明顯的光電壓變化量,可望應用於弱光偵測,改善動態範圍。
In this study, the graphene/polycrystalline silicon photodiode was merged into the gate of metal-oxide-semiconductor field effect transistor (MOSFET). The graphene/polycrystalline silicon photodiode grenerates corresponding photovoltage on the gate under different intensity of illumination and causes the modulation of channel current. The light signal can be read out by photocurrent mode or photovoltage mode.
In the part of experiment, the study tried to integrate the graphene material into CMOS semiconductor process. The uniform, monolayer, large area graphene was produced on a copper foil by chemical vapor deposion at high temperature and was transferred to the top of gate oxide. Then a polycrystalline silicon layer was deposited on graphene to form the photodiode structure. The graphene photodetector will be applied in 8×8 image sensor array eventually.
The measurement showed that the CVD graphene was integrated into CMOS semiconductor process successfully, but the processes still needs optimization a lot. The graphene/polycrystalline silicon photodetector possesses exceptionally high photovoltage under weak illumination, making it suitable for detecting weak signal, which improves the dynamic range of image sensors.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
第一章 前言 1
1.1 石墨烯材料的發展與應用 1
1.2 研究動機 4
1.3 論文章節架構 5
第二章 石墨烯的基礎特性與製備方法 6
2.1 石墨烯的物性與電性介紹 6
2.1.1 石墨烯的晶格結構 6
2.1.2 石墨烯的電子能帶 8
2.2 石墨烯的製備方法 10
2.2.1 機械剝離法 11
2.2.2 氧化還原法 12
2.2.3 液相剝離法 12
2.2.4 化學氣相沉積法 13
2.3 石墨烯的拉曼光譜分析 15
2.3.1 拉曼散射基本原理 15
2.3.2 石墨烯的拉曼光譜 16
2.3.3 石墨烯拉曼光譜的判讀 18
第三章 石墨烯光偵測器 21
3.1 蕭特基接面 21
3.2 石墨烯/N型矽蕭特基接面光偵測器 25
3.3 光偵測器特性參數 30
第四章 影像感測陣列電路設計 31
4.1 實驗流程 31
4.2 建構HSPICE MODEL 32
4.2.1 MOSFET元件模擬 32
4.2.2 建立MOSFET的BSIM 34
4.3 陣列電路設計 38
4.3.1 石墨烯影像偵測器之像素架構 38
4.3.2 輸出緩衝器 40
4.3.3 時序與行列控制電路設計 41
4.3.4 整體電路模擬測試 44
4.3.5 電路的佈局(光罩圖) 46
第五章 石墨烯影像光偵測器之實作 49
5.1 前段製程 49
5.1.1 光罩製作 49
5.1.2 晶圓的規格 50
5.1.3 晶圓的預處理 51
5.1.4 形成N井 52
5.1.5 形成P井 54
5.1.6 N井與P井退火 55
5.1.7 成長閘極氧化層 56
5.2 石墨烯的成長 57
5.2.1 高溫金屬催化成長石墨烯 57
5.2.2 石墨烯成長機制與控制參數 59
5.2.3 銅箔的預處理 60
5.2.4 常壓化學氣相沉積(APCVD)石墨烯 61
5.2.5 感應耦合型電漿化學氣相沉積(ICP CVD)石墨烯 64
5.2.6 高溫銅催化成長石墨烯的實驗結果 66
5.3 石墨烯的轉移 68
5.3.1 石墨烯支撐層的選擇與旋塗 69
5.3.2 蝕刻成長於銅箔背面的石墨烯 70
5.3.3 蝕刻銅箔 71
5.3.4 石墨烯的漂洗 72
5.3.5 轉移石墨烯與烘烤 72
5.3.6 移除支撐層 73
5.3.7 石墨烯圖案化 74
5.4 後段製程 77
5.4.1 閘極製作 77
5.4.2 N型源極/汲極離子佈植 80
5.4.3 P型源極/汲極離子佈植 81
5.4.4 源極/汲極退火 82
5.4.5 清除閘極氧化層 83
5.4.6 成長介電層ILD0與接觸窗的建立 83
5.4.7 鎢栓塞與第一層金屬連線 86
5.4.8第二層金屬連線及後續製程 88
第六章 量測與討論 90
6.1 量測儀器介紹 90
6.2 元件量測 91
6.2.1 NMOS與PMOS元件特性 91
6.2.2 石墨烯光偵測器 96
第七章 結論與未來展望 102
參考文獻 103
[1] Mayorov, A. S. et al, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature”, Nano Lett. 11, 2396–2399, 2011.
[2] Moser, J., Barreiro, A. & Bachtold, A. “Current-induced cleaning of graphene” Appl. Phys. Lett. 91, 163513, 2007.
[3] Lee, C., Wei, X. D., Kysar, J. W. and Hone, J, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385–388, 2008.
[4] Alexander A. Balandin, “Thermal properties of graphene and nanostructured carbon materials”, Nature Mater. 10, 569–581, 2011.
[5] J. Scott Bunch, Scott S. Verbridge, Jonathan S. Alden, Arend M. van der Zande, Jeevak M. Parpia, Harold G. Craighead and Paul L. McEuen, “Impermeable atomic membranes from graphene sheets”, Nano Lett. 8, 2458–2462, 2008.
[6] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, “A roadmap for graphene”, Nature, 192, 490, 2012.
[7] Schwierz, F, “Graphene transistors”, Nature Nanotechnol. 5, pp 487–496, 2010.
[8] Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., Geim, A. K., Ferrari, A. C., Novoselov, K. S., “Strong Plasmonic enhancement of photovoltage in graphene”, Nat. Commun., 2, 458, 2011.
[9] Liu, Y., Cheng, C., Liao, L., Zhou, H., Bai, J., Liu, G., Liu, L., Huang, Y., Duan, X. “Plasmon resonance enhanced multicolour photodetection by graphene”, Nat. Commun. 2, 579, 2011.
[10] Xiaohong An, Fangze Liu, Yung Joon Jung and Swastik Kar, “Tunable Graphene−Silicon Heterojunctions for Ultrasensitive Photodetection”, Nano Lett. 13, pp 909−916, 2013
[11] P. R. Wallace, “The band theory of graphite”, Phys. Rev., vol. 71, pp.622-634, 1947.
[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, reviews of modern physics, vol. 81, 2009.
[13] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the K point”, physical review B 74, 075404, 2006.
[14] J Hass, W A de Heer and E H Conrad, “The growth and morphology of epitaxial multilayer graphene”, Phys.: Condens. Matter 20, 323202, 2008.
[15] Tsuneya Ando, “The electronic properties of graphene and carbon nanotubes”, NPG Asia Mater. 1(1) pp.17–21, 2009.
[16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, vol. 306, Issue 5696, pp.666-669, 2004.
[17] K. S. Novoselov and A. H. Castro Neto, “Two-dimensional crystals-based heterostructures: materials with tailored properties”, Phys. Scr. T146, 014006, 2012.
[18] N. M. R. Peres, “Colloquium: The transport properties of graphene: An introduction”, reviews of modern physics, vol. 82, 2010.
[19] William S. HummersJr, Richard E. Offeman, “Preparation of Graphitic Oxide”, J. Am. Chem. Soc., 80 (6), pp.1339–1339, 1958.
[20] Daniel R. Dreyer, Sungjin Park, Christopher W. Bielawski and Rodney S. Ruoff, “The chemistry of graphene oxide”, Chem. Soc. Rev., 39, pp.228–240, 2010.
[21] Hernandez, Y. et al., “High-yield production of graphene by liquid-phase exfoliation of graphite”, nature nanotechnology, VOL 3, pp.563-568, 2008.
[22] Dimitrios G. Papageorgiou, Ian A. Kinloch, Robert J. Young, “Graphene/elastomer nanocomposites”, Carbon, 95, pp.460-484, 2015.
[23] Ching-Yuan Su, Ang-Yu Lu, Chih-YuWu, Yi-Te Li, Keng-Ku Liu, Wenjing Zhang, Shi-Yen Lin, Zheng-Yu Juang, Yuan-Liang Zhong, Fu-Rong Chen, and Lain-Jong Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition”, Nano Lett., 11 (9), pp.3612-3616, 2011.
[24] Ying ying Wang, Zhen hua Ni, Ting Yu, Ze Xiang Shen, Hao min Wang, Yi hong Wu, Wei Chen, and Andrew Thye Shen Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect”, J. Phys. Chem., 112, 10637–10640, 2008.
[25] Zhen hua Ni, Ying ying Wang, Ting Yu, and Ze xiang Shen, “Raman spectroscopy and imaging of graphene”, Nanyang Technological University, Singapore 637371
[26] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado,z A. Jorio and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy”, Phys. Chem. Chem. Phys., 9, pp.1276–1291, 2007.
[27] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, nature 210 nanotechnology, vol 3, 2008.
[28] M. Bigas, E. Cabruja, J. Forest, J. Salvi, “Review of CMOS image sensors”, Microelectronics Journal, 37, P.433-451, 2006.
[29] Behzad Razavi, “Dsign of Aalog CMOS Integrated Circuits”, ISBN:978-986-157-164-5, 2016.
[30] 張倫愷,”應用於0.18μm標準SiGe BiCMOS 製程影像感測器之大陣列電路設計”,清華大學,碩士論文, 2011
[31] 蔡葳品,”應用於0.18μm標準SiGe BiCMOS 製程之Full HD 影像感測器陣列電路設計”,清華大學,碩士論文, 2014
[32] Xuesong Li a, Weiwei Cai a, Jinho Ana, Seyoung Kimb, Junghyo Nahb, Dongxing Yanga, Richard Piner, Aruna Velamakannia, Inhwa Junga, Emanuel Tutucb, Sanjay K. Banerjee, Luigi Colomboc and Rodney S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, University of Texas, May. 2009
[33] Tzuan Ku, “Graphene Application in Photodetection”, Thesis, National Tsing Hua University, pp. 22-29, Jul. 2014.
[34] Xuesong Li, Weiwei Cai, Luigi Colombo and Rodney S. Ruoff, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”, Nano Lett, Vol.9, No.12, pp. 4268-4272, 2009.
[35] Xuesong Li, Luigi Colombo and Rodney S. Ruoff, “Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition”, Adv. Mater., 28, pp.6247-6252, 2016.
[36] Sreekar Bhaviripudi, Xiaoting Jia, Mildred S. Dresselhaus, and Jing Kong, “Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst”, Nano Lett, 10, pp.4128-4133, 2010.
[37] Xuesong Li, Carl W. Magnuson, Archana Venugopal, Jinho An, Ji Won Suk, Boyang Han, Mark Borysiak, Weiwei Cai, Aruna Velamakanni, Yanwu Zhu, Lianfeng Fu, Eric M. Vogel, Edgar Voelkl, Luigi Colombo, and Rodney S. Ruof, “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process”, Nano Lett, pp. 4328-4334, Oct. 2010.
[38] Li Tao, Jongho Lee, Harry Chou, Milo Holt, Rodney S. Ruoff, and Deji Akinwande, “Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films”, ACSNANO, Vol.6, pp. 2319-2325, 2012.
[39] Y. Hao, M. S. Bharathi, L. Wang, Y. Liu , H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo and R. S. Ruoff , Science , 342 , 720, 2013.
[40] Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen and Shin-Shem Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, APPLIED PHYSICS LETTERS, 93, 113103, 2008.
[41] Olesya Sarajlic, “Study of the Surface Morphology of Thermally Annealed Copper Foils and Various Transfer Methods for Graphene”, Thesis, Georgia State University, Nov. 2013.
[42] Joshua D Wood, Gregory P Doidge, Enrique A Carrion, Justin C Koepke, Joshua A Kaitz, Isha Datye, Ashkan Behnam, Jayan Hewaparakrama, Basil Aruin, Yaofeng Chen, Hefei Dong, Richard T Haasch, Joseph W Lyding and Eric Pop, “Annealing free, clean graphene transfer using alternative polymer scaffolds”, Nanotechnology, 26, 055302, 2015.
[43] Matis, Martin; Kosidlo, Urszula; Skakalova, Viera; Tonner, Friedemann; Glanz, Carsten; Kolaric, Ivica; Bauernhansl, Thomas, “Alternatives for PMMA for upscalable CVD graphene transfer”, GrapHEL, 2012.
[44] Takashi Matsumae, Andrew D. Koehler, Tadatomo Suga and Karl D. Hobart, “A Scalable Clean Graphene Transfer Process Using Polymethylglutarimide as a Support Scaffold”, ECS, 163 (6), E159-E161, 2016.
[45] Joshua D Wood, Gregory P Doidge, Enrique A Carrion, Justin C Koepke, Joshua A Kaitz, Isha Datye, Ashkan Behnam, Jayan Hewaparakrama, Basil Aruin, Yaofeng Chen, Hefei Dong, Richard T Haasch, Joseph W Lyding and Eric Pop, “Supporting Information :Annealing free, clean graphene transfer using alternative polymer scaffolds”, Nanotechnology, 26, 055302, 2015.
[46] Zengguang Cheng, Qiaoyu Zhou, Chenxuan Wang, Qiang Li, Chen Wang, and Ying Fang, “Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices”, Nano Lett., 11 (2), pp 767–771, 2011.
[47] Kunpeng Jia, Jun Luo, Rongyan Hu, Jun Zhan, Heshi Cao, Yajuan Su, Huilong Zhu, Ling Xie, Chao Zhao, Dapeng Chen and Tianchun Ye, “Evaluation of PMMA Residues as a Function of Baking Temperature and a Graphene Heat-Free-transfer Process to Reduce Them”, ECS, 5 (3), P138-P141, 2016.
[48] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles, 4e”,Mc Graw Hill Education, 2013.
[49] 蔡育揚, “新型多晶矽/石墨烯二極體與MOSFET整合元件之研究”,清華大學,碩士論文, 2015.
[50] 蕭宏, “半導體製程技術導論”,全華圖書股份有限公司,2013.
[51] 陳力俊, “微電子材料與製程”,中國材料科學學會,2000
[52] 吳昌崙 張景學, “半導體製造技術”,新文京開發出版股份有限公司,2003.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *