帳號:guest(3.147.60.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王志揚
作者(外文):Wang, Chih-Yang
論文名稱(中文):結合機器學習法舒緩過於樂觀電壓調變在預錯誤適應性調變系統
論文名稱(外文):Learning-Based Alleviation of Overoptimistic Voltage Scaling in Pre-Error AVS Systems
指導教授(中文):張世杰
指導教授(外文):Chang, Shih Chieh
口試委員(中文):王廷基
江蕙如
口試委員(外文):Wang, Ting Chi
Jiang, Hui Ru
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062645
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:29
中文關鍵詞:適應性電壓調變過於樂觀電壓調變預錯誤偵測
外文關鍵詞:Adaptive Voltage ScalingOveroptimistic Voltage ScalingPre-Error Detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:713
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
就地時序(timing)錯誤偵測及改正方法(例:Razor)可以偵測在電路中路徑的效能,尤其是對於考慮局部變動性的適應性電壓調變系統(Adaptive Voltage Scaling)更加有彈性。然而Razor存在著短路徑(short path)問題,在更先進的製程上加入延遲裝置(buffer)是不適合的,因此預錯誤(pre-error)偵測就被提出來替代。除此之外,複雜的錯誤改正(error correction)也不再需要。他們假設輸入樣式(input patterns)產生的延遲都是呈現高斯分布(Gaussian distribution),因此馬克夫鏈模型(Markov chain model)被提出來在預錯誤適應性電壓調變(pre-error AVS)控制器去尋找品質跟功率的平衡點。對於可容忍錯誤(error-tolerant)的應用上,預錯誤適應性電壓調變是比使用以Razor為基底的電壓調變還要更有效率。在本論文中,我們在28奈米製程下的可調變電壓現場可程式化閘陣列(Field-Programmable Gate Array)建構了預錯誤適應性電壓調變系統,我們觀察到當延遲分布是跟隨時間變動(time-varying)且是非高斯分布,過於樂觀電壓調變(overoptimistic voltage scaling)會發生且可能導致嚴重的錯誤。為了解決過於樂觀電壓調變的問題,我們提出插入某些邏輯閘去收集延遲嚴重的資訊,而這些資訊將會送入我們的Q適應學習模組去建構Q適應學習適應性電壓調變(learning-based AVS)。實驗結果顯示,我們提出的方法在給隨機輸入樣式時可以比原先假設延遲是高斯分布的預錯誤適應性電壓調變省下10.50%的功耗及降低0.16%的錯誤率;而當給非隨機輸入樣式時也可以省下12.51%的功耗及降低0.06%的錯誤率。
In-situ timing error detection and correction mechanisms (such as Razor) monitor the performance of actual datapaths, and are believed more resilient in adaptive voltage scaling (AVS) systems, especially when considering local variations. However, Razor has serious hold time problems, of which the overwhelming buffer padding makes it infeasible in advanced process technologies. Pre-error (or in-situ canary) detection was then proposed as an alternative. In addition, sophisticated error correction is no longer needed accordingly. The Markov chain model was proposed by independent researchers to design the pre-error AVS controller to explicitly trade quality for energy, where the input patterns are assumed to have a Gaussian delay distribution. For error-tolerant applications where few errors are acceptable, pre-error AVS is shown more efficient than Razor-based approaches. In this paper, a pre-error AVS system has been constructed on a 28nm FPGA platform with programmable power supply. It is observed that when the delay distributions are time-varying and non-Gaussian, overoptimistic voltage scaling (OVS) can occur and may lead to serious problems in pre-error AVS. To resolve the OVS problem, we propose to insert certain logics to collect the delay criticality information, which is fed into a Q-learning model to create the learning-based AVS. Experimental results show that the proposed scheme saves 10.50% power while reducing 0.16% error rate for random inputs and saves 12.51% power while reducing 0.06% error rate for non-random inputs, compared with the original pre-error AVS that assumes a static Gaussian delay distribution.
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 PRE-ERROR AVS 5
CHAPTER 3 PRE-ERROR AVS ON FPGA MULTIMEDIA PROCESSING 9
CHAPTER 4 LEARING-BASED AVS 14
4.1 Path Definition 14
4.2 Pattern Classification 15
4.3 Q-Learning 18
CHAPTER 5 EXPERIMENTAL RESULTS 21
CHAPTER 6 CONCLUSIONS 26
REFERENCES 27
[1] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S. L. L. Lu, T. Karnik and V. K. De, “Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 49–63, Jan. 2009.
[2] Y. G. Chen, W. Y. Wen, T. Wang, Y. Shi and S. C. Chang, “Q-Learning Based Dynamic Voltage Scaling for Designs with Graceful Degradation,” in Proc. of the 2015 Symposium on International Symposium on Physical Design (ISPD), pp. 41-48, 2015.
[3] S. Das, D. M. Bull, and P. N. Whatmough, “Error-resilient design techniques for reliable and dependable computing,” IEEE Trans. Device Mater. Rel., vol.15, no.1, pp. 24-34, Mar. 2015.
[4] S. Das, D. Roberts, S. Leem S. Pant, D. Blaauw, T. Austin, K. Flautner and T. Mudge, “A Self-Tuning DVS Processor Using Delay-Error Detection and Correction,” in Proc. of IEEE Solid-State Circuits Society, pp. 792-804, 2006.
[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation”, in Proc. of International Symposium on Microarchitecture (MICRO), pp.7-18, 2003.
[6] H. Fuketa, M. Hashimoto, Y. Mitsuyama, T. Onoye, “Adaptive Performance Compensation With In-Situ Timing Error Predictive Sensors for Subthreshold Circuits,” in Proc. of IEEE Transactions on Very Large Scale Integration Systems (TVLSI), Vol.20, Issue 2, Jan. 2012.
[7] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai and T. Furuyama, “Variable supply-voltage scheme for low-power high-speed CMOS digital design,” in Proc. of IEEE J. Solid-State Circuits, Vol. 33, Issue 3, pp.454-462, Mar. 1998.
[8] T. J. Lin and T. Y. Shyu, "Speculative Lookahead for Energy-Efficient Microprocessors," in Proc. of IEEE Transactions on Very Large Scale Integration Systems (TVLSI), Vol.24, Issue 1, pp. 50-57, 2016.
[9] Y. S. Su, P. H. Chang, S. C. Chang and T. T. Hwang, “Synthesis of a Novel Timing-Error Detection Architecture,” in Proc. of ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol.13, Issue1, Article 14, Jan. 2008.
[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Cambridge, MA: MIT Press, 1998.
[11] R. K. Uppu, R. T. Uppu, A. D. Singh, and I. Polian, "Better-than-worst-case timing design with latch buffers on short paths," in Proc. 27th International Conference on VLSI Design and 13th International Conference on Embedded Systems, 2014, pp. 133-138.
[12] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” Mach. Learning, pp.279-292, 1992.
[13] M. Wirnshofer, Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits, Springer, 2013.
[14] M. Wirnshofer, L. Heiss, A. N. Kakade, N. P. Aryan, G. Georgakos and D. Schmitt-Landsiedel, “Adaptive Voltage Scaling by In-Situ Delay Monitoring for an Image Processing Circuit,” in Proc. of IEEE International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 205-208, 2012.
[15] Y. Zhang, M. Khayatzadeh, K. Yang, M. Saligane, N. Pinckney, M. Aloto, D. Blaauw and D. Sylvester, "iRazor: 3-transistor current-based error detection and correction in an ARM Cortex-R4 processor," in Proc. ISSCC, 2016, pp. 160-162.
(此全文限內部瀏覽)
電子全文檔
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *