帳號:guest(13.59.188.225)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉嘉糧
作者(外文):Liu, Chia Liang
論文名稱(中文):CSAR: 一個基於代數重組距離並利用一個參考基因體的Contig Scaffolding工具
論文名稱(外文):CSAR: A Contig Scaffolding Tool Using Single Reference Genome Based on Algebraic Rearrangement Distance
指導教授(中文):盧錦隆
指導教授(外文):Lu, Chin Lung
口試委員(中文):唐傳義
邱顯泰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062627
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:22
中文關鍵詞:次世代定序基因體草圖代數重組距離
外文關鍵詞:next generation sequencingdrafe genomealgebraic rearrangement distancescaffolding
相關次數:
  • 推薦推薦:0
  • 點閱點閱:325
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
次世代定序 (Next Generation Sequencing,簡稱NGS)技術已經允許我們對許多有興趣的物種有效率地產生出它們的基因體草圖 (draft genomes)。然而,大多數的基因體草圖都只是一群獨立的DNA片段 (contigs),它們在被定序基因體上的相對位置與方向是未知的。目前有許多的scaffolding軟體工具,包括我們實驗室在2014年所設計出來的CAR,已經被發展出來可以利用一個完整的參考基因體去決定基因體草圖上DNA片段的前後順序與方向。大部分的scaffolding軟體工具只可以應用在單一完整的參考基因體。然而,這種做法會降低實務上的可應用性,因為目前公開的基因體資料庫中,基因體草圖比完整的基因體更容易取得。2015年我們實驗室發表一篇趨近線性時間的scaffolding演算法,其可以利用基因體草圖來做為scaffolding的參考。在本研究中,我們將此演算法實作成一個scaffolding軟體工具名叫CSAR (Contig Scaffolding using Algebraic Rearrangement distance)使得其可以根據單一完整的或草圖的參考基因體來決定基因體草圖上DNA片段的前後順序與方向。除此之外,我們的實驗結果也顯示出在大多數情況之下,我們的CSAR在敏感度、準確度、F-score與基因體覆蓋率等上的表現皆比其他的scaffolding軟體工具好。
Next generation sequencing technologies have allowed us to efficiently produce draft genomes for many organisms of interest. However, most draft genomes are just col-lections of independent contigs whose relative positions and orientations along the genome being sequenced are unknown. Currently, several scaffolding tools, including CAR that was designed by our laboratory in 2014, have been developed to order and orient the contigs of draft genomes using single complete reference genomes. How-ever, most of these scaffolding tools can apply only on a complete reference genome. This may reduce their usability in practice because in current public databases, the availability of draft genomes greatly exceeds that of completely sequenced ones. In 2015, our laboratory published a near-linear time scaffolding algorithm that can use a draft genome as a reference to order and orient the contigs. In this study, we imple-ment this algorithm into a scaffolding tool named CSAR (Contig Scaffolding using Algebraic Rearrangement Distance) such that it can order and orient the contigs in a target draft genome according to a complete or draft reference genome. In addition, our experimental results have shown that in most cases, our CSAR performs better than other scaffolding tools in terms of sensitivity, precision, F-score and coverage.
中文摘要 I
Abstract II
Acknowledgement III
Contents IV
List of figures V
List of figures VI
List of tables VII
Chapter 1 Introduction 1
Chapter 2 Preliminaries 3
Chapter 3 CSAR Algorithm 7
Chapter 4 Experimental Results 12
Chapter 5 Conclusion 20
References 21
[1] van Hijum SA, Zomer AL, Kuipers OP, Kok J. (2005) Projector 2 contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acids Res, 33:W560–W566.
[2] Richter DC, Schuster SC, Huson DH. (2007) OSLay: optimal syntenic layout of unfin-ished assemblies. Bioinformatics, 23, 1573–1579.
[3] Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. (2009) ABACAS algo-rithm-based automatic contiguation of assembled sequences. Bioinformatics, 25:1968–1969.
[4] Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna. (2009) NT: Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics, 25:2071–2073.
[5] Muñoz A, Zheng CF, Zhu QA, Albert VA, Rounsley S, Sankoff D. (2010) Scaffold fill-ing, contig fusion and comparative gene order inference. BMC Bioinformatics, 11:304.
[6] Husemann P, Stoye J. (2010) r2cat: synteny plots and comparative assembly. Bioinfor-matics, 26:570–571.
[7] Galardini M, Biondi EG, Bazzicalupo M, Mengoni A. (2011) CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol Med, 6:11.
[8] Dias Z, Dias U, Setubal JC. (2012) SIS: a program to generate draft genome sequence scaffolds for prokaryotes. BMC Bioinformatics, 13:96.
[9] C. L. Lu, K.-T. Chen, S.-Y. Huang, H.-T. Chiu. (2014) CAR: contig assembly of pro-karyotic draft genomes using rearrangements, BMC Bioinformatics, 15, 381.
[10] Kolmogorov M, Raney B, Paten B, Pham S. (2014) Ragout - a reference-assisted assem-bly tool for bacterial genomes, Bioinformatics, 30, i302-i309.
[11] Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lio P, Crescenzi P, Fani R, Fondi M: (2015) MeDuSa: a multi-draft based scaffolder. Bioinformatics, 31:2443–2451.
[12] C. L. Lu. (2015) An Efficient Algorithm for the Contig Ordering Problem under Alge-braic Rearrangement Distance. Computational Biology, 22, 975-987.
[13] Bergeron, A., Mixtacki, J., Stoye, J. (2006) A unifying view of genome rearrangements. Lect. Notes Computer Science, 4175, 163–173.
[14] Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biology, 5, R12.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *