帳號:guest(3.135.204.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅晟
作者(外文):Cheng Ruo
論文名稱(中文):在格子圖和圓環圖的相連P3遊戲
論文名稱(外文):Connected P3-game on grids and tori
指導教授(中文):韓永楷
指導教授(外文):Wing-Kai Hon
口試委員(中文):盧錦隆
李哲榮
口試委員(外文):Chin-Lung Lu
Che-Rung Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062623
出版年(民國):106
畢業學年度:105
語文別:中文英文
論文頁數:54
中文關鍵詞:P3遊戲
外文關鍵詞:P3-game
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
令 G = (V, E)為一個相連圖。我們說一個集合 U 為 P3-convex: 如果對於每個掉在 V \ U 的點,該點的鄰居最多只有一個點屬於 U。對於任意集合 W,我們用 σ(W)定義包含 W 的唯一且最小 P3-convex 集合。 兩個玩家在一個圖上玩 connected P3-game,輪流挑選沒有被標記過的點,遊戲開始所有點都沒有被標記,M 為被標記的點集合,一開始是空集合,玩家的每一步可以標記一個先前沒有被標記的點 v,使得 M
被更新為 M’ = σ(M ∪ {v}),且如果 M’是相連的,這步才可以下,
當該某為玩家時,如果發現所有點都被標記,則該玩家就輸了。在這
篇論文中,我們考慮在格子圖與圓環圖上玩 connected P3-game,我們
給了該遊戲的 Grundy 值公式。我們還進一步考慮在路徑和環上玩
connected Pr-game,當 r 大於等於 3。
Let G = (V,E) be a connected graph. We say a set U ⊆ V is P3-convex if every vertex of V\U has at most one neighbor in U. For any set W ⊆ V , we use σ(W) to denote the unique minimal P3-convex set of vertices that contains W. Two players play the connected P3-game on a graph by alternately selecting unmarked vertices. At the start of the game all vertices are unmarked, and the set of marked vertices, denoted by M, is empty. A move consists of marking a previously unmarked vertex v, so that M is updated to M0 = σ(M ∪{v}), and such a move is legal only when M0 is connected. When it is a player’s turn to move, he loses the game if all vertices are marked. In this thesis, we consider the connected P3-game on grids and tori, and give closed form formulae of their corresponding Grundy values. We also consider the related Pr-game, with r ≥ 3, that is played on a path or a cycle.
Contents
1 Introduction 1
1.1 Impartial Combinatorial Games 2
1.2 Nim Game 3
1.3 P3 Games 4

2 Preliminaries 8
2.1 P-positions and N-positions 8
2.2 The Sprague-Grundy Function 10

3 Connected P3-Game on Grids 14
3.1 When v is a Corner Vertex 21
3.2 When v Lies on the Border 23
3.3 When v Lies in the Middle 30
3.4 All in a Nutshell 35

4 Connected P3-Game on Tori 37

5 Connected Pr-Game on Paths and Cycles 41
5.1 Connected Pr-Game on Paths 43
5.1.1 Properties of ⊕ 44
5.1.2 Case Analysis of the Closed Form 45
5.2 Connected Pr-Game on Cycles 49

6 Conclusion 52
[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical Plays, Volume 1. AK Peters/CRC Press, 2001.
[2] B. Bollob´as. The Art of Mathematics: Coffee Time in Memphis. Cam bridge University Press, 2006.
[3] J. H. Conway. On Numbers and Games. AK Peters/CRC Press, 2000.
[4] E. Duchˆene, M. Dufour, S. Heubach, and U. Larsson. Building Nim. International Journal of Games Theory, 45(4):859–873, 2016.
[5] M. Dufour and S. Heubach. Circular Nim Games. The Electronic Journal of Combinatorics, 20(2):#P22, 2013.
[6] T. S. Ferguson. Game Theory, Part I, 2014. www.math.ucla.edu/~tom/Game_Theory/Contents.html
[7] M. Gymrek and J. Li. Theory of Impartial Games. Course Notes of The Mathematics of Toys and Games, MIT Course SP.268, 2011. web.mit.edu/sp.268/www/nim.pdf
[8] W. K. Hon, T. Kloks, F.-H. Liu, H.-H. Liu, and T. M. Wang. P3-Games. The Computing Research Repository (CoRR), abs/1608.05169, 2016.
[9] W. K. Hon, T. Kloks, F.-H. Liu, H.-H. Liu, and T. M. Wang. P3 Games on Chordal Bipartite Graphs. The Computing Research Repository (CoRR), abs/1610.07018, 2016.
[10] E. H. Moore. A Generalization of the Game called Nim. The Annals of Mathematics, 11(3):93–94, 1910.
[11] R. J. Nowakowski. Games of No Chance. Cambridge University Press, 1998.
[12] D. Wolfe, M. H. Albert, and R. J. Nowakowski. Lessons in Play: An Introduction to Combinatorial Game Theory. AK Peters/CRC Press, 2007.
[13] Y. Yamasaki. On Misere Nim-Type Games. Journal of the Mathematical Society of Japan, 32(3):461–475, 1980.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *