帳號:guest(3.147.58.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):麥育輔
作者(外文):Mai, Yu Fu
論文名稱(中文):用於重建快速移動物件之基於區塊的高動態範圍影片處理
論文名稱(外文):Patch-Based HDR Video Processing for Fast Moving Object Reconstruction
指導教授(中文):邱瀞德
指導教授(外文):Chiu, Ching Te
口試委員(中文):李政崑
鐘太郎
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062607
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:52
中文關鍵詞:高動態範圍基於區塊移動物件影片處理
外文關鍵詞:high dynamic rangepatch basedmoving objectvideo processing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:651
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
隨著顯示器的快速發展,高動態範圍影片的應用也跟著增加。然而,大部份的研究都專注在產生單一的高動態範圍影像,高動態範圍影片則較少被注意到。為了取得高動態範圍影片,直接拍攝高動態範圍影片是可能的。但這需要用到特別的相機,而這類型的相機昂貴且不常見。有一個實際的方法是利用單一相機交替轉換每個幀的曝光時間。這個方法已經被研究一陣子了而且在現有的研究中很多都是以此為基礎。對於大部份的人來說,這個方法是可行的但並不是所有相機都可做到這件事。為了應用現有的這些方法來產生高動態範圍影片,輸入必須要是輪替曝光時間的幀。
為了避免硬體設備的限制,我們提出了一種基於區塊的方法,該方法僅使用單一曝光的低動態範圍影片來重建場景中移動的物件並產生高動態範圍影片。我們計算兩兩相鄰的幀之間的動作流並且對每個動作流分配適當的搜尋範圍。有了動作流和搜尋範圍圖,我們可以重建出具有複雜動作的區域並且不產生錯誤而確保了相鄰幀之間時間上的一致性。比較了目前在產生高動態範圍影片中最先進的Kalantari等人的方法,我們可以減少總執行時間的百分之十四。而且,多種評分方式呈現了我們的結果相較於他們的更接近於參考的影片。
As the display devices develop rapidly, the applicability of high dynamic range (HDR) video is increased. However, most of the researches focus on generating a single HDR image and HDR video has less attention. To obtain HDR video, it is possible to capture HDR video directly. But using a specialized camera is necessary and this kind of camera is expensive and less widespread. A practical way is to use a single camera that alternates exposures for each frame. This approach has been explored in the past and many existing researches are based on it. For most people, this approach is feasible but not all video cameras can do this. To apply existing methods to generate HDR video, the input must be alternative exposure video sequences.
To avoid the limit of equipment, we propose a patch-based method using single low dynamic range (LDR) video to reconstruct moving objects in the scene and generate HDR video. We compute the motion flows in two adjacent frames and assign an appropriate search window size for each flow. Using the motion flow and search window map, we can reconstruct the region with complex motion without generating artifacts and ensure temporal coherence between adjacent frames. Comparing with Kalantari {\it et al.}’s method, the state-of-the-art for producing HDR video, we can reduce 14 percent of total execution time. Also, several evaluations show that our results are more similar to the reference video than theirs.
1 Introduction 1
1.1 Background of high dynamic range (HDR) video . . . . . . . . . . . 1
1.2 Motivation and Problem Description . . . . . . . . . . . . . . . . . 2
1.3 Goal and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Related Works 4
3 Patch-based moving object reconstruction 10
3.1 Generation of pseudo-exposure frame . . . . . . . . . . . . . . . . . 11
3.2 Motion flow estimation . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Original Search window map computation . . . . . . . . . . . . . . 14
3.4 Modified Search window map computation . . . . . . . . . . . . . . 14
3.5 Frame Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Experimental Results 27
4.1 Visual effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 SSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Contrast perception error . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Conclusion 46
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
[1] A. O. Akyüz, R. Fleming, B. E. Riecke, E. Reinhard, and H. H. Bülthoff. “Do
HDR displays support LDR content?: a psychophysical evaluation.” ACM
Transactions on Graphics (TOG), 2007, 26.3: 38.
[2] T. O. Aydin, R. Mantiuk, K. Myszkowski, and H. P. Seidel. “Dynamic
range independent image quality assessment.” ACM Transactions on Graphics
(TOG), 2008, 27.3: 69.
[3] F. Banterle, P. Ledda, K. Debattista, and A. Chalmers. “Expanding low
dynamic range videos for high dynamic range applications.” Proceedings of
the 24th Spring Conference on Computer Graphics. ACM, 2008. p. 33-41.
[4] F. Banterle, P. Ledda, K. Debattista, and A. Chalmers. “Inverse tone mapping.”
Proceedings of the 4th international conference on Computer graphics
and interactive techniques in Australasia and Southeast Asia. ACM, 2006. p.
349-356.
[5] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman. “PatchMatch:
a randomized correspondence algorithm for structural image editing.” ACM
Transactions on Graphics-TOG, 2009, 28.3: 24.
[6] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein. “The generalized
patchmatch correspondence algorithm.” European Conference on Computer
Vision. Springer Berlin Heidelberg, 2010. p. 29-43.
[7] K. K. Biswas and S. Pattanaik. “A simple spatial tone mapping operator
for high dynamic range images.” Color and Imaging Conference. Society for
Imaging Science and Technology, 2005. p. 291-296.
[8] A. Cole, and M. Safai, 2013. “Soviet Montage Productions.” http://
www.sovietmontage.com/.
[9] P. E. Debevec and J. Malik. “Recovering high dynamic range radiance maps
from photographs.” ACM SIGGRAPH 2008 classes. ACM, 2008. p. 31.
[10] G. Eilertsen, R. Wanat, R. K. Mantiuk and J. Unger. “Evaluation of Tone
Mapping Operators for HDR‐Video.” Computer Graphics Forum. 2013. p.
275-284.
[11] Ginger HDR, 2013. A commercial HDR merging application. http://www.
19lights.com/.
[12] S. B. Kang, M. Uyttendaele, S. Winder and R. Szeliski. “High dynamic range
video.” ACM Transactions on Graphics (TOG). ACM, 2003. p. 319-325.
[13] J. Kronander, S. Gustavson, G. Bonnet and J. Unger. “Unified HDR reconstruction
from raw CFA data.” Computational Photography (ICCP), 2013
IEEE International Conference on. IEEE, 2013. p. 1-9.
[14] J. W. Lee, R. H. Park and S. Chang. “Local tone mapping using the K-means
algorithm and automatic gamma setting.” IEEE Transactions on Consumer
Electronics, 2011, 57.1: 209-217.
[15] C. Liu. Beyond pixels: exploring new representations and applications for
motion analysis. Diss. Massachusetts Institute of Technology, 2009.
[16] D. G. Lowe. “Distinctive image features from scale-invariant keypoints.” International
journal of computer vision, 2004, 60.2: 91-110.
[17] S. Mangiat and J. Gibson. “High dynamic range video with ghost removal.”
SPIE Optical Engineering+ Applications. International Society for Optics and
Photonics, 2010. p. 779812-779812-8.
[18] S. Mangiat and J. Gibson. “Spatially adaptive filtering for registration artifact
removal in HDR video.” 2011 18th IEEE International Conference on Image
Processing. IEEE, 2011. p. 1317-1320.
[19] R. Mantiuk, S. J. Daly, K. Myszkowski and H. P. Seidel. “Predicting visible
differences in high dynamic range images: model and its calibration.” Electronic
Imaging 2005. International Society for Optics and Photonics, 2005. p.
204-214.
[20] R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich. “HDR-VDP-2: a
calibrated visual metric for visibility and quality predictions in all luminance
conditions.” ACM Transactions on Graphics (TOG). ACM, 2011. p. 40.
[21] M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes and S. K. Nayar.
“Optical splitting trees for high-precision monocular imaging.” IEEE Computer
Graphics and Applications, 2007, 27.2: 32-42.
[22] G. Messina, A. Castorina, S. Battiato and A. Bosco. “Image quality improvement
by adaptive exposure correction techniques.” Multimedia and Expo,
2003. ICME’03. Proceedings. 2003 International Conference on. IEEE, 2003.
p. I-549-52 vol. 1.
[23] L. Meylan, S. Daly, and S. Süsstrunk. “The reproduction of specular highlights
on high dynamic range displays.” Color and Imaging Conference. Society
for Imaging Science and Technology, 2006. p. 333-338.
[24] S. K. Nayar and T. Mitsunaga. “High dynamic range imaging: Spatially
varying pixel exposures.” Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on. IEEE, 2000. p. 472-479.
[25] Photomatix, 2012. Commercially-available HDR processing software. http://
www.hdrsoft.com/.
[26] E. Reinhard, M. Stark, P. Shirley and J. Ferwerda. “Photographic tone reproduction
for digital images.” ACM Transactions on Graphics (TOG), 2002,
21.3: 267-276.
[27] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward and K.
Myszkowski. “High dynamic range imaging: acquisition, display, and imagebased
lighting.” Morgan Kaufmann, 2010.
[28] A. G. Rempel, M. Trentacoste, H. Seetzen, H. D. Young, W. Heidrich, L.
Whitehead and G. Ward. “Ldr2hdr: on-the-fly reverse tone mapping of legacy
video and photographs.” ACM Transactions on Graphics (TOG). ACM, 2007.
p. 39.
[29] M. A. Robertson, S. Borman and R. L. Stevenson. “Dynamic range improvement
through multiple exposures.” Image Processing, 1999. ICIP 99. Proceedings.
1999 International Conference on. IEEE, 1999. p. 159-163.
[30] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman and
E. Shechtman. “Robust patch-based hdr reconstruction of dynamic scenes.”
ACM Trans. Graph., 2012, 31.6: 203.
[31] N. K. Kalantari, E. Shechtman, C. Barnes, S. Darabi, D. B. Goldman, and
P. Sen. “Patch-based high dynamic range video.” ACM Trans. Graph., 2013,
32.6: 202:1-202:8.
[32] E. Shechtman, A. Rav-Acha, M. Irani, and S. Seitz. “Regenerative morphing.”
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on. IEEE, 2010. p. 615-622.
[33] “SpheronVR”, 2013. http://www.spheron.com/.
[34] D. Simakov, Y. Caspi, E. Shechtman and M Irani. “Summarizing visual data
using bidirectional similarity.” Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. IEEE, 2008. p. 1-8.
[35] SpheronVR, 2013. http://www.spheron.com/.
[36] M. D. Tocci, C. Kiser, N. Tocci, and P. Sen. “A versatile HDR video production
system.” ACM Transactions on Graphics (TOG), 2011, 30.4: 41.
[37] J. Unger and S. Gustavson. “High-dynamic-range video for photometric measurement
of illumination.” Electronic Imaging 2007. International Society for
Optics and Photonics, 2007. p. 65010E-65010E-10.
[38] T. H. Wang, C. W. Chiu, W. C. Wu, J. W. Wang, C. Y. Lin, C. T. Chiu
and J. J. Liou. “Pseudo-multiple-exposure-based tone fusion with local region
adjustment.” IEEE Transactions on Multimedia, 2015, 17.4: 470-484.
[39] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli. “Image quality
assessment: from error visibility to structural similarity.” IEEE transactions
on image processing, 2004, 13.4: 600-612.
[40] H. Zimmer, A. Bruhn and J. Weickert. “Freehand HDR imaging of moving
scenes with simultaneous resolution enhancement.” Computer Graphics Forum.
Blackwell Publishing Ltd, 2011. p. 405-414.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *