帳號:guest(3.147.81.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉晏如
作者(外文):Liu, Yen-Ju
論文名稱(中文):在感測網路中傳送樹資料結構之最大生命週期資料收集樹之重建方法
論文名稱(外文):Reconfiguration of Maximum-lifetime Data Gathering Trees with Tree Structure Data Broadcasting in Sensor Network
指導教授(中文):林華君
指導教授(外文):Lin, Hwa-Chun
口試委員(中文):陳俊良
蔡榮宗
口試委員(外文):Chen, Jiann-Liang
Tsai, Jung-Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062602
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:感測網路樹資料結構
外文關鍵詞:Sensor networkTree structure data
相關次數:
  • 推薦推薦:0
  • 點閱點閱:835
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在感測網路中使用資料收集樹收集資料的過程中,各個 sensor 的剩餘電量會改變,此時為了延長感測網路的生命週期,需重新建立新的資料收集樹,找 出適合當下狀況的樹來收集資料。因此在找出感測網路生命週期的過程中,會 產生多顆資料收集樹,來因應感測網路在收集資料時造成的各個 sensor 剩餘電 量的變化。每次在使用新的資料收集樹前,必須要先使網路中的所有 sensor 知 道在新的資料收集樹結構下其父節點與子節點為何,才能開始進行資料收集。 本篇論文設計了傳送新的樹的結構資料給所有 sensor 的方法,及樹結構資料的 格式。除此之外,本篇論文也提出了何時需重新建立新的資料收集樹與使用新 的資料收集樹,以延長感測網路的生命週期。
In the process of receiving data with data gathering tree in sensor network, the residual energy of each sensor may change. At this time, in order to extend the lifetime of sensor network, we need to construct a new data gathering tree again. The new data gathering tree is suitable for the situation of the sensor network at that moment. In order to find a more suitable tree for the situation with the change of residual power of each sensor in the sensor network, we generate multiple data gathering trees to receive data. Before we begin to use a new data gathering tree to receive data, we have to notify every nodes in sensor network about the information of new tree structure such as parent node information and child nodes information under the new data gathering tree structure. In this paper, we design a method to transmit new tree’s tree structure data to all sensors and the format of tree structure data. In addition, we propose a method to decide when to construct a new data gathering tree and when to use the new data gathering tree to extend lifetime of the sensor network.
第一章、Introduction ............................................................................................... 1
第二章、Sensor Network Model ............................................................................. 4
第三章、Reconfiguration......................................................................................... 7
3.1. Reconfigure when R set change......................................................................7
3.1.1. R set definition.....................................................................................7
3.1.2. Factors of reconfiguring when R set change........................................8
3.1.3. Details of using new data gathering trees when R set change ........... 10
3.2. Design and implementation of using better new tree....................................17
3.2.1. Theory of using better new data gathering tree .................................18
3.2.2. Details of using better new data gathering tree..................................20
第四章、Tree structure data.................................................................................28
4.1. Tree structure data format ....................................................................... 28
4.1.1. Arrangement of tree structure data..................................................... 28
4.1.2. Current tree’s node data ..................................................................... 30
4.1.3. New tree’s node data..........................................................................31
4.2. Tree structure data transmission....................................................................34 4.2.1. TDMA schedule ................................................................................. 35
4.2.1.1 TDMA schedule of initial spanning tree .................................... 35
4.2.1.2 TDMA schedule of transmitting data to sensor network ........... 35
4.2.1.3 TDMA schedule of receiving data from sensor network ........... 35
4.3. Tree structure data processing.......................................................................34
第五章、Simulation ............................................................................................ 43
第六章、Conclusion ............................................................................................. 48 References ..........................................................................................................49
[1] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “SupportingAggregate Queries Over Ad-Hoc Wireless Sensor Networks,” In Proceedings of 4th IEEE Workshop on Mobile Computing and SystemsApplications, pp. 49-58, June 2002.
[2] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Efficient algorithms formaximum lifetime data gathering and aggregation in wireless sensornetworks,” Computer Networks, Vol. 42, no. 6, pp. 697-716, Aug. 2003.
[3] Y. Xue, Y. Cui, and K. Nahrstedt, “Maximizing lifetime for data aggregationin wireless sensor networks,” Mobile Networks and Applications, vol. 10, no. 6, pp. 853-864, Dec. 2005.
[4] J. Stanford and S. Tongngam, “Approximation algorithm for maximumlifetime in wireless sensor networks with data aggregation,” in Proceedings of the Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD), pp. 273-277, June 2006.
[5] K. Kalpakis and S. Tang, “A combinatorial algorithm for the MaximumLifetime Data Gathering and Aggregation problem in sensor networks,”in Proceedings of the International Symposium on a World of Wireless,Mobile and Multimedia Networks (WoWMoM), pp. 1-8, June 2008.
[6] H. ̈O. Tan and ̇I. K ̈orpeoˇglu, “Power Efficient Data Gathering andAggregation in Wireless Sensor Networks,” ACM SIGMOD Record, vol. 32, no. 4, pp. 66-71, Dec. 2003.
[7] W. Liang and Y. Liu, “Online Data Gathering for Maximizing Network Lifetime in Sensor Networks,” IEEE Transaction on Mobile Computing, vol. 1, no. 2, pp.2-11, Jan. 2007.
[8] Y. Wu, Z. Mao, S. Fahmy, and N. B. Shroff, “Constructing Maximum-Lifetime
Data-Gathering Forests in Sensor Networks,” IEEE Transactionon Networking,
vol. 18, no. 5, pp. 1571-1584, Oct. 2010.
[9] H. C. Lin, F. J. Li, and K. Y. Wang, “Constructing maximum-lifetime data
gathering trees in sensor networks with data aggregation,” inProceedings of the
IEEE ICC, May 2010.
[10]王凱揚/林華君, “在感測網路中兩種建立最大生命週期資料收集樹方法及重
建機制方法的比較”, 碩士論文, 國立清華大學
[11]陳威宇/林華君, “在使用資料匯集和可調整傳輸範圍機制的感測網路中建立
最大生命週期資料收集樹” , 碩士論文, 國立清華大學
[12] Texas Instruments, “A True System-on-Chip Solution for 2.4-GHz IEEE
802.15.4 and ZigBee Applications,” [Online].
Available:http://www.ti.com/lit/ds/symlink/cc2530.pdf
[13] S. Rao, “Estimating the ZigBee transmission-range ISM band,” EDN,vol. 52, nopp. 199-207, 2012.
[29] C. I Chang, M. H. Tsai, Y. C. Liu, C. M. Sun and W. Fang, “Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor,” Journal of Micromechanics and Microengineering, vol. 23, 095029, 2013.
[30] R. Parashkov, E. Becker, T. Riedl, H. H. Johannes and W. Kowalsky, “Large area electronics using printing methods,” Proceedings of the IEEE, vol. 93, pp. 1321-1329, 2005.
[31] K. Huang, R. Dinyari, G. Lanzara, J. Y. Kim, J. Feng, C. Vancura, F. K. Chang, and P. Peumans, “An approach to cost-effective, robust, large-area electronics using monolithic silicon,” IEEE International Electron Devices Meeting, Washington, Dec., pp. 217-220, 2007.
[32] S. Sosin, T. Zoumpoulidis, M. Bartek, L. Wang, R. Dekker, K.M.B. Jansen, L. J. Ernst, “Free-standing, parylene-sealed copper interconnect for stretchable silicon electronics,” Electronic Components and Technology Conference, Lake Buena Vista, May, pp. 1339-1345, 2008.
[33] S. Sosin, T. Zoumpoulidis, M. Bartek, R. Dekker, “Large-area silicon electronics using stretchable metal interconnect,” Electronic Components and Technology Conference, San Diego, May, pp. 1059-1064, 2009.
[34] T. Zoumpoulidis, M. Bartek, P. D. Graaf, R. Dekker, “High-aspect-ratio through-wafer parylene beams for stretchable silicon electronics,” Sensors and Actuators A: Physical, vol. 156, pp. 257-264, 2009.
[35] H. Hocheng and C. M. Chen, “Design, fabrication and failure analysis of stretchable electrical routings,” SENSORS, vol. 14, pp. 11855-11877, 2014.
[36] T. Sekitani and T. Someya, “Stretchable organic integrated circuits for large-area electronic skin surfaces,” MRS BULLETIN, vol. 37, pp. 236-245, 2012.
[37] J. A. Rogers, T. Someya and Y. Huang, “Materials and mechanics for stretchable electronics,” SCIENCE, vol. 327, pp. 1603-1607, 2010.
[38] D. H. Kim, R. Ghaffari, N Lu and J. A. Rogers, “Flexible and stretchable electronics for biointegrated devices,” Annual Review of Biomedical Engineering, vol. 14, pp. 113-128, 2012.
[39] J. H. Ahn and J. H. Je, “Stretchable electronics: materials, architectures and integrations,” Journal of Physics D: Applied Physics, vol. 45, 103001, 2012.
[40] D. H. Kim, J. Xiao, J. Song, Y. Huang and J. A. Rogers, “Stretchable, curvilinear electronics based on inorganic materials,” Advanced Materials, vol. 22, pp. 2108-2124, 2010.
[41] N. Chen, J. Engel, J. Chen, Z. Fan and C. Liu, “Micromachined thermal imaging mesh for conformal sensing system,” IEEE Sensors, Irvine, Oct., pp. 700-703, 2005.
[42] Z. Guo, K. Kim, G. Lanzara, N. Salowitz, P. Peumans, and F. K. Chang, “Micro-fabricated, expandable temperature sensor network for macro-scale deployment in composite structures,” IEEE Aerospace Conference, Big Sky, Mar., pp. 1-6, 2011.
[43] G. Lanzara, J. Feng and F. K. Chang, “Design of micro-scale highly expandable networks of polymer-based substrates for macro-scale applications,” Smart Materials and Structures, vol. 19, 045013, 2010.
[44] R. H. Kim, M. H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D. H. Kim, M. Li, J. Wu, F. Du, H. S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop and J. A. Rogers, “Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates,” NANO Letters, vol. 11, pp. 3881-3886, 2011.
[45] S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Optics Express, vol. 16, pp. 4965-4971, 2008.
[46] R. Dinyari, S. B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Applied Physics Letters, vol. 92, 091114, 2008.
[47] H. C. KO, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers. “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature Letters, vol. 454, pp. 748-753, 2008.
[48] N. Salowitz, Z. Guo, Y. H. Li, K. Kim, G. Lanzara and F. K. Chang, “Bio-inspired stretchable network-based intelligent composites,” Journal of Composite Materials, 0021998312442900, 2012.
[49] N. Salowitz, Z. Guo, S. J. Kim, Y. H. Li, G. Lanzara, and F. K. Chang, “Bio-inspired intelligent sensing materials for fly-by-feel autonomous vehicles,” IEEE Sensors, Taipei, Oct., pp. 1-3, 2012.
[50] G. Lanzara, N. Salowitz, Z. Guo, and F. K. Chang, “A spider-web-like highly expandable sensor network for multifunctional materials,” Advanced Materials, vol. 22, pp. 4643-4648, 2010.
[51] N. Salowitz, Z. Guo, Y. H. Li, K. Kim, G. Lanzara, K. Kim, Y. Chen, F K Chang, “Development of a bio-inspired stretchable network for intelligent composites,” International Conference On Composite Materials, Jeju island, aug., pp. 22-26, 2011.
[52] K. Huang and P. Peumans, “Stretchable silicon sensor networks for structural health monitoring,” Proceedings of SPIE, vol. 6174, 617412, 2006.
[53] M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, “Design of metal interconnects for stretchable electronic circuits,” Microelectronics Reliability, vol. 48, pp. 825-832, 2008.
[54] D. Brosteaux, F. Axisa, M. Gonzalez, and J. Vanfleteren, “Design and fabrication of elastic interconnections for stretchable electronic circuits,” IEEE Electron Device Letters, vol. 28, pp. 552-554, 2007.
[55] F. Bossuyt, T. Vervust, and J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, pp. 229-235, 2013.
[56] Y. Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren and I. D. Wolf, “The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit,” Journal of Micromechanics and Microengineering, vol. 20, 075036, 2010.
[57] Y. Y. Hsu, C. Papakyrikos, D. Liu, X. Wang, M. Raj, B. Zhang and R. Ghaffari, “Design for reliability of multi-layer stretchable interconnects,” Journal of Micromechanics and Microengineering, vol. 24, 095014, 2014.
[58] D. H. Kim, R. Ghaffari, N. Lu, S. Wang, S. P. Lee, H.Keum, R. D’Angelo, L. Klinker, Y. Su, C. Lu, Y. S. Kim, A. Ameen, Y. Li, Y. Zhang, B. Graff, Y. Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F. G. Omenetto, Y. Huang, M. Mansour, M.J. Slepian, and J. A. Rogers, “Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy,” Proceedings of the National Academy of Sciences, vol. 109, pp. 19910-19915, 2012.
[59] M. Meng, Y. Xu, H. Zhang and S. Liu, “Intelligent textiles based on MEMS technology,” Electronic Components and Technology Conference, Sparks, May, pp. 2030-2034, 2007.
[60] X. Zhuang, D. S. Lin, O. Oralkan, and B. T. Khuri-Yakub, “Fabrication of flexible transducer arrays with through-wafer electrical interconnects based on trench refilling with PDMS,” Journal of Microelectromechanical Systems, vol. 17, pp. 446-452, 2008.
[61] S. P. Lacour, Sigurd Wagner, Zhenyu Huang and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Applied Physics Letters, vol. 82, pp. 2404-2406, 2003.
[62] S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces, Proceedings of the IEEE, vol. 93, pp. 1459-1467, 2005.
[63] W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” NANO Letters, vol. 7, pp. 1655-1663, 2001.
[64] D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science, vol. 311, pp. 208-212, 2006.
[65] D. H. Kim, Z. Liu, Y. S. Kim, J. Wu, J. Song, H. S. Kim, Y. Huang, K. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small, vol. 5, pp. 2841-2847, 2009.
[66] D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science, vol. 320, pp. 507-511, 2008.
[67] K. L. Lin and K. Jain, “Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation,” IEEE Electron Device Letters, vol. 30, pp. 14-17, 2009.
[68] K. L. Lin and K. Jain, “Stretchable, multilayer, self-aligned interconnects fabricated using excimer laser photoablation and in-situ masking,” Proceedings of SPIE, vol. 7204, 720409, 2009.
[69] K. L. Lin, J. Chae, and K. Jain, “Design and fabrication of large-area, redundant, stretchable interconnect meshes using excimer laser photoablation and in situ masking,” IEEE Transactions On Advanced Packaging, vol. 33, pp. 592-600, 2010.
[70] S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P. V. Braun, Y. Huang, U. Paik and J. A. Rogers, “Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems,” NATURE Communications, 4, 1543, 2013.
[71] Y. Zhang, Y. Huang and J. A. Rogers, “Mechanics of stretchable batteries and supercapacitors,” Current Opinion in Solid State and Materials Science, vol. 19, pp. 190-199, 2015.
[72] J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon and D. H. Kim, “Stretchable silicon nanoribbon electronics for skin prosthesis,” NATURE Communications, 5, 5747, 2014.
[73] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. I. Najafabadi, D. N. Futaba and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” NATURE nanotechnology, vol. 6, pp. 296-301, 2011.
[74] L. Cai1, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, X. Zhang, M. Tu, F. Yang, W. Zhou, Q. Fan, J. Luo, W. Zhou, P. M. Ajayan and S. Xie, “Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection,” Scientific Reports, 3, 3048, 2013.
[75] S. Cheng and Z. Wu, “Microfluidic stretchable RF electronics,” Lab on a Chip, vol.10, pp. 3227-3234, 2010.
[76] S. Cheng and Z. Wu, “A microfluidic, reversibly stretchable, large‐area wireless strain sensor.” Advanced Functional Materials, vol.21, pp. 2282-2290, 2011.
[77] F. Forsberg, N. Roxhed, T. Haraldsson, Y. Liu, G. Stemme, and F. Niklaus, “Batch transfer of radially expanded die arrays for heterogeneous integration using different wafer sizes,” Journal of Microelectromechanical Systems, vol. 21, pp. 1077-1083, 2012.
[78] S. I. Park, Y. Xiong, R. H. Kim, P. Elvikis, M. Meitl, D. H.yeong Kim, J. Wu, J.Yoon, C. J. Yu, Z. Liu, Y. Huang, K. Hwang, P. Ferreira, X. Li, K. Choquette, J. A. Rogers “Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays.” Science, vol. 325, pp. 977-981, 2009.
[79] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” SCIENCE, vol. 321, pp. 1468-1472, 2008.
[80] S. Yao and Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale, vol. 6, pp. 2345-2352, 2014.
[81] L. Cai and C. Wang, “Carbon nanotube flexible and stretchable electronics,” Nanoscale Research Letters, 10:320, 2015.
[82] J. P. Rojas, A. M. Hussain, A. Arevalo, I. G. Foulds, G. A. T. Sevilla, J. M. Nassar and M. M. Hussain, “Transformational electronics are now reconfiguring,” Proceedings of SPIE, vol. 9467, 946709, 2015.
[83] D. C. Wang, J. C. Chou, S. M. Wang, P. L. Lu and L. P. Liao, “Application of a fringe capacitive sensor to small-distance measurement” Japanese Journal of Applied Physics, vol.42 pp.5816-5820, 2003.
[84] P. H. Lo, S. H. Tseng, J. H. Yeh and W. Fang, “Development of a proximity sensor with vertically monolithic integrated inductive and capacitive sensing units,” Journal of Micromechanics and Microengineering, vol.23, 035013, 2013.
[85] B. E. Noltingk, A. E. T. Nye, and H. J. Turner, “Theory and application of a proximity gauge using fringing capacitance,” in Proc. ACTAIMEKO, pp. 537-549, 1976.
[86] J. H. Yeh, C. Hong, F. M. Hsu and W. Fang, “Novel temperature sensor implemented on nanoporous anodic aluminum oxide template,” IEEE Sensors, Limerick, Oct., pp.1253-1256, 2011.
[87] S. He, M. M. Mench and S. Tadigadapa, “Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell,” Sensors and Actuators A: Physical, vol.125, pp.170-177, 2006.
[88] Y. H. Jang, K. N. Lee and Y. K. Kim, “Characterization of a single-crystal silicon micromirror array for maskless UV lithography in biochip applications,” Journal of Microelectromechanical Systems, vol.16, pp.2360-2368, 2006.
[89] M. Stoppa and A. Chiolerio, “Wearable electronics and smart textiles: a critical review,” SENSORS, vol. 14, pp. 11957-11992, 2014.
[90] F. Carpi and D. D. Rossi, “Electroactive polymer-based devices for e-textiles in biomedicine,” IEEE Transactions on Information Technology in Biomedicine, vol. 9, pp. 295-318, 2005.
[91] R. Paradiso, G. Loriga, N. Taccini, A. Gemignani, and B. Ghelarducci, “WEALTHY - a wearable healthcare system: new frontier on e-textile,” Journal of Telecommunications and Information Technology, pp. 205-213, 2005.
[92] V. Saarela , S. Franssila, S. Tuomikoski, S. Marttila, P. Ostman, T. Sikanen, T. Kotiaho, R. Kostiainen, “Re-usable multi-inlet PDMS fluidic connector,” Sensors and Actuators B: chemical, vol. 114, pp. 552-557, 2006.
[93] J. Y. Kim, C.Lee, K. Park, G. Lim and C. Kim, “A PDMS-based 2-axis waterproof scanner for photoacoustic microscopy,” Sensors, vol. 15, pp. 9815-9826, 2015.
[94] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, vol 56, pp. 2929-2936, 2008.
[95] M. Park, H. Kim, and J. P. Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films,” Nanotechnology, vol. 19, pp. 055705, 2008.
[96] C. F. Hu, W. S. Su, and W. Fang, “Development of patterned carbon nanotubes on 3D polymer substrate for the flexible tactile sensor application,” Journal of Micromechanics and Microengineering, vol. 21, 115012, 2011.
[97] N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga,“Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor,” Carbon, vol. 48, pp. 680-687, 2010.
[98] W. Fang, H. Y. Chu, W. K. Hsu, T. W. Cheng, and N. H. Tai, “Polymer-reinforced, aligned multiwalled carbon nanotube composites for microelectromechanical systems applications,” Advanced Materials, vol. 17, pp. 2987-2992, 2005.
[99] W. K. Hsu, H. Y. Chu, T. H. Chen, T. W. Cheng, and W. Fang, “An exceptional bimorph effect and a low quality factor from carbon nanotube-polymer composites,” Nanotechnology, vol. 19, pp. 135304, 2008.
[100] T. H. Chen, S. Y. Lu, C. M. Lin, W. K. Hsu, and W. Fang, “Carbon nanotube arrays on flexible substrate and their field emssion characteristic,” IEEE MEMS Conference, Tucson, Jan., pp. 697-700, 2008.
[101] P. Rezai, P. R. Selvaganapathy, and G. R. Wohl, “Plasma enhanced bonding of polydimethylsiloxane with parylene and its optimization,” Journal of Micromechanics and Microengineering, vol. 21, pp. 065024, 2011
[102] Y. C. Liu, C. M. Sun, L. Y. Lin, M. H. Tsai, and W. Fang, “Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,” Journal of Microelectromechanical Systems, vol. 20, pp. 119-127.
[103] H. K. Lee, S. I. Chang, and E. Yoon, “A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment,” Journal Of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *