帳號:guest(3.21.105.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林季蓁
作者(外文):Lin, Ji Jhen
論文名稱(中文):在異質無線感知網路下基於中國餘式定理的多無線電跳頻演算法
論文名稱(外文):A Chinese Remainder Theorem Based Multi-Radio Rendezvous Algorithm in Heterogeneous Cognitive Radio Networks
指導教授(中文):許健平
指導教授(外文):Sheu, Jang Ping
口試委員(中文):張貴雲
楊得年
沈之涯
口試委員(外文):Chang, Guey Yun
Yang, De Nian
Shen, Chih Ya
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062593
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:43
中文關鍵詞:無線感知網路會合多無線電異質網路
外文關鍵詞:cognitive radio networksrendezvousmultiple radiosheterogeneous networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:279
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在無線感知網路(CRNs)中,次級用戶(SUs)在不干擾授權用戶的通信服務品質的狀況下,有機會可以使用暫時沒有被使用的頻譜。用戶必須與另一個用戶在相同頻譜會合並建立通訊連線。傳統的會合演算法假設每個用戶只配備了一個感知無線電,這幾年來,隨著無線收發器價格的大幅下降,在用戶上裝配多個感知無線電藉以減少會合所需時間的方法變得更加可行。在本篇論文中,我們提出一套基於中國餘式定理所設計的多感知無線電的頻道會合(CRT-based Multi-radio Rendezvous)演算法,這個演算法可以在異質無線感知網路下使用,而異質無線感知網路指的是網路中的每個使用者可能有不同頻譜感知能力。我們所設計的演算法可以在O((N_1 N_2)/(m_1 m_2))時間內達到最大的交會多樣性,在此N_1跟N_2所指的是需要會合的兩用戶各自的可用頻道數目,而m_1跟m_2指的是兩用戶各自擁有的感知無線電數目。模擬結果顯示我們所設計的方法可以比已知的會合演算法有更好的表現。
In cognitive radio networks (CRNs), secondary users (SUs) can utilize the temporary unused spectrum opportunistically without affecting the quality of services of the licensed users, also called primary users (PUs). It is a fundamental operation for user to rendezvous with another user on the same channel and establish a communication link. Traditional rendezvous algorithms assume homogeneous CRNs and each user equipped with a single radio. In recent years, the cost of wireless transceivers has fallen dramatically. It is more feasible for users to apply multiple radios to reduce the time to rendezvous (TTR) significantly. In this thesis, we propose a CRT-based Multi-radio Rendezvous (CMR) algorithm for heterogeneous CRNs, where the users are unaware of total number of channels and are allowed to have different spectrum-sensing capabilities. Our CMR scheme applies Chinese Remainder Theorem (CRT) to achieve maximum rendezvous diversity within O((N_1 N_2)/(m_1 m_2)) time, where N_1 and N_2 are the number of available channels of two users and m_1 and m_2 are the number of radios of two users. Simulation results show that CMR has better performance than the previous works.
Chapter 1 Introduction 1
Chapter 2 Related Work 5
Chapter 3 CRT-based Multi-Radio Rendezvous Algorithm (CMR) 10
3.1 System Model 10
3.2 Problem Definition 11
3.3 CRT-based Channel Hopping Scheme 12
3.3.1 Rendezvous through CRT 12
3.3.2 Algorithms 17
3.4 Time Complexity Analysis 24
3.5 Performance Analysis 25
Chapter 4 Performance Evaluation 27
4.1 Impact of the T_α 28
4.2 Impact of the Number of Licensed Channels 29
4.3 Impact of the Number of Radios 31
4.4 Impact of the Number of Common Channels 33
4.5 Impact of the Number of Available Channels 35
Chapter 5 Conclusion 38
References 39

[1] FCC Spectrum Policy Task Force Report, ET Docket No. 02-135, Nov. 2002.
[2] A. Ghasemi and E.S. Sousa, “Spectrum Sensing in Cognitive Radio Networks: Requirements, Challenges and Design Trade-offs,” IEEE Communication Magazine, Vol. 46, No. 4, pp. 32 – 39, Apr. 2008.
[3] C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, “IEEE 802.22: The First Worldwide Wireless Standard based on Cognitive Radios,” Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 328 – 337, Baltimore, MD, USA, Nov. 2005.
[4] S. Krishnamurthy, M. Thoppian, S. Venkatesan, and R. Prakash, “Control Channel Based MAC-Layer Configuration, Routing and Situation Awareness for Cognitive Radio Networks,” Proceedings of the IEEE Military Communications Conference (MILCOM), pp. 455 – 460, Atlantic City, NJ, USA, Oct. 2005.
[5] J. Pérez-Romero, O. Salient, R. Agustí, and L. Giupponi, “A Novel On-Demand Cognitive Pilot Channel Enabling Dynamic Spectrum Allocation,” Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 46 – 54, Dublin, Ireland, Apr. 2007.
[6] C.-F. Shih, T. Y. Wu, and W. Liao, “DH-MAC: A Dynamic Channel Hopping MAC Protocol for Cognitive Radio Networks,” Proceedings of the IEEE International Conference on Communications (ICC), pp. 1 – 5, Cape Town, South Africa, May 2010.
[7] L. Chen, S. Shi, K. Bian, and Y. Ji, “Optimizing Average-Maximum TTR Trade-off for Cognitive Radio Rendezvous,” Proceedings of the IEEE International Conference on Communications (ICC), pp. 7707 – 7712, London, UK, June 2015.
[8] K. Bian and J.-M. Park, “Maximizing Rendezvous Diversity in Rendezvous Protocols for Decentralized Cognitive Radio Networks,” IEEE Transactions on Mobile Computing, Vol. 12, No. 7, pp. 1294 – 1307, July 2013.
[9] L. Chen, K. Bian, L. Chen, C. Liu, J.-M. J. Park, and X. Li, “A Group-Theoretic Framework for Rendezvous in Heterogeneous Cognitive Radio Networks,” Proceedings of the fifteenth ACM international symposium on Mobile ad hoc networking and computing (MobiHoc), pp. 165 – 174, Philadelphia, PA, USA, Aug. 2014.
[10] P. Bahl, R. Chandra and J. Dunagan, “SSCH: Slotted Seeded Channel Hopping for Capacity Improvement in IEEE 802.11 Ad Hoc Wireless Networks,” Proceedings of the Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 216 – 230, NY, USA, Oct. 2004.
[11] I. Chuang, H.-Y. Wu, K.-R. Lee, and Y.-H. Kuo, “A Fast Blind Rendezvous Method by Alternate Hop-and-Wait Channel Hopping in Cognitive Radio Networks,” IEEE Transactions on Mobile Computing, Vol. 13, No. 99, pp. 2171 – 2184, Jan. 2014.
[12] Z. Gu, Q.-S. Hua, and W. Dai, “Local Sequence Based Rendezvous Algorithms for Cognitive Radio Networks,” Proceedings of the IEEE 11th International Conference on Sensing, Communication, and Networking (SECON), pp. 194 – 202, Singapore, July 2014.
[13] G.-Y. Chang, J.-F. Huang, and Y.-S. Wang, “Matrix-Based Channel Hopping Algorithms for Cognitive Radio Networks,” IEEE Transactions on Wireless Communications, Vol. 14, No. 5, pp. 2755 – 2768, Jan. 2015.
[14] J. Li and Jiang Xie, “Practical Fast Multiple Radio Blind Rendezvous Schemes in Ad-Hoc Cognitive Radio Networks,” Proceedings of Resilience Week (RWS), pp. 1 – 6, Philadelphia, PA, USA, Aug. 2015.
[15] R. N. Yadav, R. Misra, “Periodic Channel-Hopping Sequence for Rendezvous in Cognitive Radio Networks,” Proceedings of International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1787 – 1792, Kochi, India, Aug. 2015.
[16] L. Yu, H. Liu, Y.-W. Leung, X. Chu, and Z. Lin, “Channel-Hopping Based on Available Channel Set for Rendezvous of Cognitive Radios,” Proceedings of the IEEE International Conference on Communications (ICC), pp. 1573 – 1579, Sydney, NSW, June 2014.
[17] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-Stay Rendezvous Algorithm for Cognitive Radio Networks,” IEEE Transactions on Parallel and Distributed Systems, Vol. 23, No. 10, pp.1867 – 1881, Oct. 2012.
[18] Z. Gu, Q.S. Hua, Y. Wang, and F. C. M. Lau, “Nearly Optimal Asynchronous Blind Rendezvous Algorithm for Cognitive Radio Networks,” Proceedings of the IEEE 10th International Conference on Sensing, Communication, and Networking (SECON), pp. 371 – 379, New Orleans, LA, USA, June 2013.
[19] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Enhanced Jump-Stay Rendezvous Algorithm for Cognitive Radio Networks,” IEEE Communications Letters, Vol. 17, No. 9, pp. 1742 – 1745, Sept. 2013.
[20] J. Shin, D. Yang, and C. Kim, “A Channel Rendezvous Scheme for Cognitive Radio Networks,” IEEE Communications Letters, Vol. 14, No. 10, pp. 954–956, Oct. 2010.
[21] G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel Channel-Hopping Schemes for Cognitive Radio Networks,” IEEE Transactions on Mobile Computing, Vol. 13, No. 2, pp. 407 – 421, Feb. 2014.
[22] L. Yu, H. Liu, Y. W. Leung, X. Chu, and Z. Lin, “Multiple Radios for Fast Rendezvous in Cognitive Radio Networks,” IEEE Transactions on Mobile Computing, Vol. 14, No. 9, pp. 1917-1931, Sep., 2015.
[23] K.-Y. Cheon, C.-J. Kim, and J. K. Choi, “Rendezvous for Self-Organizing MANET with Multiple Radio,” Proceedings of International Conference on Communications Technology Convergence (ICTC), pp. 906 – 911, Jeju, Korea, Oct. 2015.
[24] R. Paul, Y. Z. Jembre, and Y.-J. Choi. “Multi-Interface Rendezvous in Self-Organizing Cognitive Radio Networks,” Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 531 – 540, McLean, VA, USA, Apr. 2014.
[25] S.H. Wu, C.C. Wu, W.K. Hon, and K.G. Shin, “Rendezvous for Heterogeneous Spectrum-Agile Devices,” Proceedings of the IEEE Conference on Computer Communications (INFOCOM), pp. 2247-2255, Toronto, ON, USA, Apr. 2014.
[26] C.-C. Wu and S.-H. Wu, “On Bridging the Gap between Homogeneous and Heterogeneous Rendezvous Schemes for Cognitive Radios,” Proceedings of the fourteenth ACM international symposium on Mobile ad hoc networking and computing (MobiHoc), pp. 207 – 216, bangalore, India, July 2013.
[27] Z. Gu, H. Pu, Q.-S. Hua, and F. C. M. Lau, ” Improved Rendezvous Algorithms for Heterogeneous Cognitive Radio Networks,” Proceedings of the IEEE Conference on Computer Communications (INFOCOM), pp. 154 – 162, Kowloon, Hong Kong, May 2015.
[28] L. Yu, H. Liu, Y. W. Leung, X. Chu, and Z. Lin, “Adjustable Rendezvous in Multi-Radio Cognitive Radio Networks,” Proceedings of the IEEE Global Communications Conference (GLOBECOM), pp. 1 – 7, San Diego, CA, Dec 2015.
[29] Z. Gu, Q.-S. Hua, and W. Dai, “Fully Distributed Channel-Hopping Algorithm for Rendezvous Setup in Cognitive Radio Networks,” IEEE Transactions on Vehicular Technology Society (TVT), Dec 2015. Advance online publication. 10.1109/TVT.2015.2510359.
[30] G. Li, Z. Gu, X. Lin, H. Pu, and Q.-S. Hua, “Deterministic Distributed Rendezvous Algorithms for Multi-Radio Cognitive Radio Networks,” Proceedings of the 17th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems (MSWiM), pp. 313 – 320, Montreal, Canada, Sep. 2014.
[31] P. Bahl, A. Adya, J. Padhye, and A. Walman, ”Reconsidering Wireless Systems with Multiple Radios,” ACM SIGCOMM Computer Communication Review, Vol. 34, No. 5, pp. 39-46, Oct. 2004.
[32] V. Brik, E. Rozner, S. Banerjee, and P. Bahl, “DSAP: a Protocol for Coordinated Spectrum Access,” Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 611 – 614, Baltimore, MD, USA, Nov. 2005.
[33] M. M. Buddihikot, P. Kolodzy, S. Miller, K. Ryan and J. Evans, “DIMSUMnet: New Directions in Wireless Networking Using Coordinated Dynamic Spectrum,” Proceedings of the IEEE International Symposium on a World of Wireless, Mobile, and Multimedia Networks (WoWMoM), pp. 78 – 85, Taormina, Giardini Naxos, Italy, June 2005.
[34] C. R. Stevenson, G. Chouinard, Z. Lei, S. J. Shellhammer, W. Caldwell, “IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard,” IEEE Communication Magazine, Vol. 47, No. 1, pp. 130 – 138, Jan. 2009.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *