|
[1] J. Tighe and S. Lazebnik.: Superparsing: scalable nonparametric image parsing with superpixels. In: ECCV. (2010) [2] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, and L. Bourdev.: Semantic segmentation using regions and parts. In: CVPR. (2012) [3] C. Farabet, C. Couprie, L. Najman, Y. LeCun.: Learning hierarchical features for scene labeling. In IEEE TPAMI. (2013) [4] B. Hariharan, P. Arbel´aez, R. Girshick, and J. Malik.: Simultaneous detection and segmentation. In: ECCV. (2014) [5] J. Long, E. Shelhamer, and T. Darrell.: Fully convolutional networks for semantic segmentation. In: CVPR. (2015) [6] H. Noh, S. Hong, and B. Han.: Learning deconvolution network for semantic segmentation. In: ICCV. (2015) [7] A. Krizhevsky, I. Sutskever, and G. E. Hinton.: Imagenet classification with deep convolutional neural networks. In: NIPS. (2012) [8] K. Simonyan and A. Zisserman.: Very deep convolutional networks for large-scale image recognition. In: ICLR. (2015) [9] R. Girshick, J. Donahue, T. Darrell, and J. Malik.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR. (2014) [10] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR. (2015) [11] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr.: Conditional random fields as recurrent neural networks. In: ICCV. (2015) [12] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang.: Semantic image segmentation via deep parsing network. In: ICCV. (2015) [13] G. Lin, C. Shen, A. Hengel, and I. Reid.: Efficient piecewise training of deep structured models for semantic segmentation. In: CVPR. (2016) [14] C. A. Sutton and A. McCallum.: Piecewise training for undirected models. In: UAI. (2005) [15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR. (2009) [16] S. Ioffe and C. Szegedy.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167. (2015) [17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.: Improving neural networks by preventing coadaptation of feature detectors. arXiv:1207.0580. (2012) [18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.: Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093. (2014) [19] C. Liu, J. Yuen, and A. Torralba.: Sift flow: Dense correspondence across scenes and its applications. In: IEEE TPAMI. (2011) [20] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik.: Semantic contours from inverse detectors. In: ICCV. (2011) [21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll’ar, and C. L. Zitnick.: Microsoft COCO: Common objects in context. In: ECCV. (2014). [22] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille.: The role of context for object detection and semantic segmentation in the wild. In: CVPR. (2014)
|