|
[1] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, in IEEE ISSCC, 2016. [2] Y.-H. Chen, J. Emer, and V. Sze, Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks, in IEEE ISCA, 2016. [3] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, DianNao: A Small- footprint High-throughput Accelerator for Ubiquitous Machine-learning, in ASPLOS, 2014. [4] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam, DaDianNao: A Machine-Learning Supercomputer, in MICRO, 2014. [5] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen, Pudiannao: A polyvalent machine learning accelerator, in ASPLOS. ACM, 2015, pp. 369381. [6] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam, ShiDianNao: Shifting Vision Processing Closer to the Sensor, in ISCA, 2015. [7] J. Sim, J. S. Park, M. Kim, D. Bae, Y. Choi, and L. S. Kim, 14.6 a 1.42tops/w deep convolutional neural network recognition processor for intelligent ioe systems, in ISSCC16, pp. 264265, Jan 2016. [8] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, cuDNN: Efficient Primitives for Deep Learning, CoRR, vol. abs/1410.0759, 2014. [9] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, Cnp: An fpga-based processor for convolutional networks, in FPL. IEEE, 2009, pp. 3237. [10] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto, and H. P. Graf, A Massively Parallel Coprocessor for Convolutional Neural Networks, in IEEE ASAP, 2009. [11] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, A Dynamically Config- urable Coprocessor for Convolutional Neural Networks, in ISCA, 2010. [12] c. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun, ”NeuFlow: A runtime reconfigurable dataflow processor for vision,” in IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition Workshops (CVPRW) . IEEE, Jun. 2011, pp.109-116. [13] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, Memory-centric accelerator design for Convolutional Neural Networks, in IEEE ICCD, 2013. [14] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks, in IEEE CVPRW, 2014. [15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks, in FPGA, 2015. [16] Q. Jiantao, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song, Y. Wang, and H. Yang, Going deeper with embedded fpga platform for convolutional neural network. Proceedings of the 2016 ACM/SIGDA International Symposium on Field- Programmable Gate Arrays. ACM, 2016. [17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convo- lutional neural networks, in NIPS, 2012, pp. 10971105. [18] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in ECCV, 2014, pp. 818833. [19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, arXiv preprint arXiv:1409.4842, 2014. [20] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014. [21] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, arXiv preprint arXiv:1512.03385, 2015. [22] J. Cong and B. Xiao. Minimizing computation in convolutional neural networks. In Artificial Neural Networks and Machine Learning-ICANN 2014, pages 281-290. Springer, 2014. [23] An Intuitive Explanation of Convolutional Neural Networks by ujjwalkarn, 2016. [24] Shaoqing Ren, et al, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, 2015, arXiv:1506.01497. [25] Clarifai / Technology [26] Wikipedia article on Kernel (image processing). [27] Neural Networks by Rob Fergus, Machine Learning Summer School 2015. [28] CS231n Convolutional Neural Networks for Visual Recognition, Stanford. [29] Teledyne DALSA / Image Filtering in FPGAs.
|