帳號:guest(52.15.70.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳亮元
作者(外文):Chen, Liang Yuan
論文名稱(中文):The Testing Analysis of Cyclic Combinational Circuits and its Application on SAT-based Test Generation
論文名稱(外文):迴路化組合電路之測試分析及其滿足性基礎之測試型樣產生之應用
指導教授(中文):王俊堯
指導教授(外文):Wang, Chun Yao
口試委員(中文):劉建男
黃俊達
口試委員(外文):Liu, Chien Nan
Huang, Juinn Dar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062552
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:34
中文關鍵詞:迴路化組合電路
外文關鍵詞:cyclic combinational circuit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:503
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
邏輯電路可分做兩類:組合(combinational)電路與循序(sequential)電路。然而,組合電路是可以被迴路化的。而迴路化組合電路為含有迴圈的組合電路。換言之,在迴路化組合電路內部的值皆為固定且穩態。目前已有一些探討迴路化組合電路於合成方面的研究,迴路化的組合電路具備降低面積及時間的優點。然而,在電路測試方面,相對於非迴路化組合電路,迴路化組合電路更為複雜且較少被探討。這篇論文分析迴路化組合電路上的測試問題,並且提出以滿足性為基礎的自動測試型樣產生(satisfiability-based automatic test pattern generation)。實驗結果顯示我們所提出的方法對於迴路化組合電路可達高的錯誤涵蓋率。
Logic circuits are classified into two categories: combinational circuits and sequential ones. However, combinational circuits could be cyclic, and cyclic combinational circuits are combinational circuits with feedback loops. That is, all the values in the cyclic combinational circuits are still fixed. Recently, some works have focused on the synthesis of cyclic combinational circuits such that the cyclic version of a combinational circuit can be available if it exists. Cyclified combinational circuits could take advantages of reducing area and timing. However, its testing problem is more complex than acyclic combinational circuits, and is still seldom discussed. In this work, we analyze the testing issue of cyclic combinational circuits and propose satisfiability-based automatic test pattern generation. The experimental results show that the proposed method can reach a high fault coverage for a set of cyclic combinational circuits.
中文摘要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Tables vi
List of Figures vii
1 Introduction 1
2 Preliminaries 6
3 Properties of Cyclic Combinational Circuit with a Stuck-at Fault 10
3.1 Example..........10
3.2 Fault Site.......14
4 Proposed SAT-based ATPG 16
4.1 Driving Input..............16
4.2 Loop Unrolling.............18
4.3 Logic and Timing Details of Proposed Approach......25
4.4 Overall Algorithm..........26
5 Experimental Results 29
6 Conlusion 31
[1] A. Raghunathan, P. Ashar, and S. Malik, “Test generation for cyclic combina- tional circuits,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 11, pp. 1408-1414, November 1995.

[2] G. S. Tseitin, “On the complexity of derivation in propositional calculus,” Au- tomation of Reasoning. Springer. pp. 466-483, 1983.

[3] J.-H. Chen, Y.-C. Chen, W.-C. Weng, C.-Y. Huang, and C.-Y. Wang, “Synthesis and verification of cyclic combinational circuits,” 2015 IEEE International SOC Conference, pp. 257-262, September 2015.

[4] L. Hellerman, “A catalog of three-variable or-invert and and-invert logical circuits,” IEEE Trans. Electronic Computers., vol. EC-12, no. 3, pp. 198-223, 1963.

[5] M. D. Riedel and J. Bruck, “The synthesis of cyclic combinational circuits,” in Proc. Design Automation Conference, pp. 163-168, 2003.

[6] M. D. Riedel and J. Bruck, “Cyclic combinational circuits: Analysis for synthesis,” in Proc. International Workshop on Logic and Synthesis, pp. 105-112,
2003.

[7] M. D. Riedel and J. Bruck, “Timing analysis of cyclic combinational circuits,” in Proc. International Workshop on Logic and Synthesis, pp. 69-77, 2004.

[8] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic circuits,” in IEEE Trans. Comput., vol. C-30, no. 7, pp. 215-222, March 1981.

[9] R. L. Rivest,“The necessity of feedback in minimal monotone combinational circuits,” IEEE Transactions on Computers, vol. C-26, no. 6, pp. 606–607, 1977.

[10] S. Edwards, “Making cyclic circuits acyclic,” in Proc. Design Automation Con- ference, 2003, pp. 159-162.

[11] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Trans. Computer- Aided Design of Integrated Circuits and Systems, vol. 13, no. 7, pp. 950-956, 1994.

[12] T. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic circuits,” in Proc. European Design and Test Conference, pp. 328-333, 1996.

[13] W. H. Kautz,“The necessity of closed circuit loops in minimal combinational circuits,” IEEE Transactions on Computers, vol. C-19, no. 2, pp. 162–164, 1970.

[14] W.-C. Weng, Y.-C. Chen, J.-H. Chen, C.-Y. Huang, C.-Y. Wang, “Using struc- tural relations for checking combinationality of cyclic circuits,” 2015 IEEE De- sign Automation and Test in Europe, pp. 325-328, March 2015.

[15] Y.-C. Chen and C.-Y. Wang, “Fast Node Merging With Don’t Cares Using Logic Implications,” in IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 11, pp. 1827-1832, 2010.

[16] Y.-C. Hsu, S. Sun, and D.-C. Du, “Finding the longest simple path in cyclic combinational circuits,” in Proc. International Conference on Computer Design, pp. 530-535, 1998.

[17] Berkeley Logic Synthesis and Verificaiton Group. ABC: A System for Sequential Synthesis and Verification. [Online]. Available: http://www.eecs.berkeley.edu/∼alanmi/abc

[18] IWLS 2005 BenchMarks. [Online]. Available: http://iwls.org/iwls2005/benchmarks.html

[19] Lingeling. [Online]. Available: http://fmv.jku.at/lingeling/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *