帳號:guest(18.117.254.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):嚴世銘
作者(外文):Kevin Cornelius Setiawan
論文名稱(中文):對於情緒分析不均勻資料之多功能學習方法
論文名稱(外文):Multiple Function Learning Approach for Unbalanced Data in Emotion Analysis
指導教授(中文):陳宜欣
指導教授(外文):Chen, Yi-Shin
口試委員(中文):陳朝欽
蘇豐文
口試委員(外文):Chen, Chaur-Chin
Soo, Von-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:103062401
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:情感分析情緒偵測機器學習
外文關鍵詞:Sentimental AnalysisEmotion DetectionMachine Learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:395
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾年來,由於網路社群、微部落格的普及,研究者們透過分析研究大量的社群資料,提出了多種情緒分析技術。人們的發文內容及行為會描繪出他們自身的情緒,而這些含有情緒資訊的發文可以進一步進行產品分析或其他相關應用。然而,由於人們發文習慣的不一致。導致資料蒐集時,各類情緒的資料分布不均勻。網路社群、微部落格上的情緒偵測也成為了非常困難的議題。我們提出的方法著重在彌平情緒資料的不一致,自動找出調整的權重比率調整該資料,讓訓練結果更加精確。
Recently, researches whose emphasizes Sentimental Analysis and Emotion Detections mainly go through large social data networks. People's posts behavior and their daily tweets in those networks portray emotions with valuable data, that can lead into product reviews, or emotion classification analysis. However, emotion detections on social network are sensitive, because they rely too much on the distribution of the emotion data. Some will be common because of trending topics, products, or life events, and some shows less and rare when it is unpopular or they are not trending. This results a gap in unbalanced distribution of emotions. Our study focuses on creating multiple functions for different objectives for weights learning to deal with unbalanced data. The design functions helps emotion detection systems to provide more detailed results, not just in their accuracy, but also precisions. Functions designed provides further handling improvements in different situations whose caused by unbalanced data.
摘要 i
Abstract ii
Acknowledgement iii
List of Tables vii
List of Figures viii
1 Introduction 1
2 Related Works 4
3 Methodology 7
3.1 Emotion Detection Scoring Schema . . . . . . . . . . . . . . . . . . . . . 7
3.2 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Emotional Scoring are Naive . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Emotion Detection Accuracies are Conditionally Passive . . . . . . 10
3.2.3 People’s Posts Behavior May Cause Unbalanced Datasets . . . . . 12
3.2.4 Rare and Common Emotions Exists . . . . . . . . . . . . . . . . . 12
3.3 Emotion Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Genetic Algorithm Approach . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 Chromosome Initialization . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Functions Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.1 Accuracy-Based Approaches . . . . . . . . . . . . . . . . . . . . . 17
3.6.2 Precision-Based Approaches . . . . . . . . . . . . . . . . . . . . . 19
4 Experiment 26
4.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1 Training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Testing Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Genetic Algorithm Base Setup . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Genetic Algorithm Weight Learning Setup . . . . . . . . . . . . . 30
4.2 Experiments Baseline - Standard Emotional Degree . . . . . . . . . . . . . 31
4.3 Accuracy-Based Approach Results . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Function 1: Naive Weighted Accuracy Optimization . . . . . . . . 32
4.3.2 Function 2: Precision Supported Accuracy Optimization . . . . . . 34
4.4 Precision-Based Approach Results . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Function 3: Overall Precision Evaluation . . . . . . . . . . . . . . 37
4.4.2 Performance Comparison - Accuracy and Precision Approaches . . 40
4.4.3 Rare and Common Emotions Trend . . . . . . . . . . . . . . . . . 41
4.4.4 Focused Rare and Common Emotions Evaluation(Function 4) . . . 42
4.5 Overall Experiment Comparisons . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.1 Common Emotions Overall Comparison . . . . . . . . . . . . . . . 46
4.5.2 Rare Emotions Overall Comparison . . . . . . . . . . . . . . . . . 48
4.6 Functions Evaluation Comparison . . . . . . . . . . . . . . . . . . . . . . 49
4.6.1 First Function Evaluation . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.2 Second Function Evaluation . . . . . . . . . . . . . . . . . . . . . 49
4.6.3 Third Function Evaluation . . . . . . . . . . . . . . . . . . . . . . 50
4.6.4 Fourth Function Evaluation . . . . . . . . . . . . . . . . . . . . . 50
5 Conclusion and Future Work 51
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References 53
[1] Andrew J. McMinn, Daniel Tsvetkov, Tsvetan Yordanov, Andrew Patterson, Rrobi
Szk, Jesus A. Rodriguez Perez, and Joemon M. Jose. An interactive interface for
visualizing events on twitter. In Proceedings of the 37th International ACM SIGIR
Conference on Research & Development in Information Retrieval, SIGIR
’14, pages 1271–1272, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2257-
7. doi: 10.1145/2600428.2611189. URL http://doi.acm.org/10.1145/
2600428.2611189.
[2] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classification
using machine learning techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10, pages 79–86.
Association for Computational Linguistics, 2002. URL http://dl.acm.org/
citation.cfm?id=1118704.
[3] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 168–177. ACM, 2004.
[4] Carlos Argueta, Yi-Shin. Chen, and Elvis Saravia. Unsupervised graph-based patterns extraction for emotion classification. In 2015 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM 2015), 2015
[5] Robert Plutchik. The natural of emotions. American Scientist, 89(4):344–350, July
2001.
[6] Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, and Amit P Sheth. Harnessing
twitter ”big data” for automatic emotion identification. In Privacy, Security, Risk and
Trust (PASSAT), 2012 International Conference on and 2012 International Conference
on Social Computing (SocialCom), pages 587–592. IEEE, 2012.
[7] S. Wen and X. Wan. Emotion Classification in Microblog Texts Using Class
Sequential Rules. In Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI14/
paper/view/8209.
[8] Ahmed Esmin, RL de Oliveira, Stan Matwin, et al. Hierarchical classification approach
to emotion recognition in twitter. In Machine Learning and Applications
(ICMLA), 2012 11th International Conference on, volume 2, pages 381–385. IEEE,
2012.
[9] Jin-Ji Li Jungi Kim and Jong-Hyeok Lee. Discovering the discriminative views: Measuring
term weights for sentiment analysis. 2009.
[10] Nikolaos Pappaos and Andrei Popescu. Explaining the stars: Weighted multipleinstance
learning for aspect-based sentiment analysis. 2014
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *