帳號:guest(3.136.234.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林維誠
作者(外文):Lin,Wei Cheng
論文名稱(中文):一個利用人類Thin-Slice情緒感知特性所建構而成之全時情緒辨識模型新框架
論文名稱(外文):A Novel Global Affect Recognition Framework by Modeling Human’s Thin-Slice Emotion Perception
指導教授(中文):李祈均
指導教授(外文):Lee,Chi Chun
口試委員(中文):李宏毅
冀泰石
曹昱
口試委員(外文):Lee,Hung Yi
Chi,Tai Shih
Tsao,Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061637
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:45
中文關鍵詞:行為訊號處理thin-slice情感接收多模態情緒辨識
外文關鍵詞:Behavior Signal Processing(BSP)thin-slice affect perceptionmultimodal emotion recognition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:436
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
人類擁有透過短時間、片段的觀測便能準確判斷出另一人高階之個人特色認知結果的獨特感知機制,此現象即為心理學上所謂人類thin-slice決策理論。在此論文中我們提出了一個可以對於每筆影音演出資料中基於行為-情緒互消息及行為密度所擷取出「富含短時情緒表達且非離群之片段行為」資料所建構而成之「全時」情緒辨識模型之計算框架。對於激動度、統御度以及正負價我們分別較使用全部行為資料所建構而成之模型提升了0.338、0.159及0.251最後達到了0.722、0.834及0.822的高水準全時情緒辨識準確率,由此顯著的辨識率提升更加強化了人類對於thin-slice情感接收理論。此外,我們對於這些所擷取出之thin-slice片段進一步細部分析後發現其主要藉由改變資料中的:(1)時間分佈(2)行為分佈後可以降低辨識模型之訓練資料複雜度因此進而提升模型辨識率,並且由論文中我們所設計的情緒接收實驗發現了這些挑選出來的重要片段資料能對於真實人類情緒決策的結果確實產生影響及改變。我們透過適當的擷取出這些thin-slice片段不僅能有效提升對於全時情緒的辨識率還能帶來更多額外對於人類thin-slice情感接收機制的見解。
The ability to accurately judge another persons’ higher-level attributes with a short duration of observations is a unique perceptual mechanism for humans, termed as the thin-slice theory of judgment in psychology. In this work, we propose a computational framework based on behavior-emotion mutual information and behavior density to extract the “thin-sliced local emotion-rich and non-outlier behavior segments” within each session to be used as the data to train the global affect recognizers. We achieve the global emotion recognition accuracy of 0.722, 0.834, and 0.822 for activation, dominance, and valence respectively, which improves 0.338, 0.159 and 0.251 absolute over using behavior data of the entire session. The significant improvement in the global emotion recognition rate reinforces the thin-slice nature of human emotion perception. Furthermore, our detailed analyses for the “thin-sliced segments” indicate that the major changes within the selected thin slice data are along the following aspects:(1)time distribution and (2)behavior distribution. It effectively reduces the complexity of the training data and thus enhance the prediction accuracy; furthermore, our human perceptual experiment demonstrates that the framework indeed does make an impact and change for affect perception. By properly extracting the thin-slice segments, we obtain not only improved global emotion recognition rates but also bring additional insights into this emotion thin-slice perception mechanism.
口試委員會審定書 #
誌 謝 i
中 文 摘 要 ii
ABSTRACT iii
目 錄 iv
圖目錄 vi
表目錄 vii
一、 序論 1
1.1 背景介紹 1
1.2 研究目的 3
1.3 論文架構 3
二、 研究方法 4
2.1 資料庫介紹 4
2.2 提出之演算法架構 7
2.2.1 行為訊號特徵擷取及離散化表達 8
2.2.2 行為片段之擷取量度計算 10
2.2.3 「全時」情緒辨識模型之建構 15
三、 實驗設計、結果及分析 19
3.1 實驗設計 19
3.2 實驗結果及分析 20
3.2.1 額外之結果比較及分析 24
四、 擷取之行為片段分析 28
4.1 時間分佈分析 28
4.2 行為分佈分析 29
4.3 「短時」情緒等級行為分佈分析 31
五、 擷取片段之真實應用實驗測試 35
5.1 實驗說明 35
5.2 實驗結果及分析 37
六、 結論與未來方向 39
REFERENCE 41
附錄 45
[1] R. B. Zajonc, "Feeling and thinking: Preferences need no inferences." American psychologist 35.2 (1980): 151.
[2] B. De Martino, D. Kumaran, B. Seymour, and R. J. Dolan, “Frames, biases, and rational decision-making in the human brain,” Science, vol. 313, no. 5787, pp. 684–687, 2006.
[3] J. S. Lerner and D. Keltner, “Beyond valence: Toward a model of emotion-specific influences on judgement and choice,” Cognition & Emotion, vol. 14, no. 4, pp. 473–493, 2000.
[4] I. Blanchette and A. Richards, “The influence of affect on higher level cognition: A review of research on interpretation, judgement, decision making and reasoning,” Cognition & Emotion, vol. 24, no. 4, pp. 561–595, 2010.
[5] G. Margolin, P. H. Oliver, E. B. Gordis, H. G. O’hearn, A. M. Medina, C. M. Ghosh, and L. Morland, “The nuts and bolts of behavioral observation of marital and family interaction,” Clinical Child and Family Psychology Review, vol. 1, no. 4, pp. 195–213, 1998.
[6] R. E. Heyman, “Observation of couple conflicts: clinical assessment applications, stubborn truths, and shaky foundations.” Psychological assessment, vol. 13, no. 1, p. 5, 2001.
[7] J. C. Norcross and B. E. Wampold, “Evidence-based therapy relationships: research conclusions and clinical practices.” Psychotherapy, vol. 48, no. 1, p. 98, 2011.
[8] L. Sanders, C. Trinh, B. Sherman, and S. Banks, “Assessment of client satisfaction in a peer counseling substance abuse treatment program for pregnant and postpartum women,” Evaluation and Program Planning, vol. 21, no. 3, pp. 287–296, 1998.
[9] C. Lord, S. Risi, L. Lambrecht, E. H. Cook Jr, B. L. Leventhal, P. C. DiLavore, A. Pickles, and M. Rutter, “The autism diagnostic observation schedulegeneric: A standard measure of social and communication deficits associated with the spectrum of autism,” Journal of autism and developmental disorders, vol. 30, no. 3, pp. 205–223, 2000.
[10] P. Borkenau, N. Mauer, R. Riemann, F. M. Spinath, and A. Angleitner, “Thin slices of behavior as cues of personality and intelligence.” Journal of personality and social psychology, vol. 86, no. 4, p. 599, 2004.
[11] N. Ambady and H. M. Gray, “On being sad and mistaken: mood effects on the accuracy of thin-slice judgments.” Journal of personality and social psychology, vol. 83, no. 4, p. 947, 2002.
[12] N. Ambady and R. Rosenthal, “Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis.” Psychological bulletin, vol. 111, no. 2, p. 256, 1992.
[13] N. Ambady and R. Rosenthal, “Half a minute: Predicting teacher evaluations from thin slices of nonverbal behavior and physical attractiveness.” Journal of personality and social psychology, vol. 64, no. 3, p. 431, 1993.
[14] K. A. Fowler, S. O. Lilienfeld, and C. J. Patrick, “Detecting psychopathy from thin slices of behavior.” Psychological assessment, vol. 21, no. 1, p. 68, 2009.
[15] L. P. Naumann, S. Vazire, P. J. Rentfrow, and S. D. Gosling, “Personality judgments based on physical appearance,” Personality and Social Psychology Bulletin, 2009.
[16] T. F. Oltmanns, J. N. Friedman, E. R. Fiedler, and E. Turkheimer, “Perceptions of people with personality disorders based on thin slices of behavior,” Journal of Research in Personality, vol. 38, no. 3, pp. 216–229, 2004.
[17] C. Oveis, J. Gruber, D. Keltner, J. L. Stamper, and W. T. Boyce, “Smile intensity and warm touch as thin slices of child and family affective style.” Emotion, vol. 9, no. 4, p. 544, 2009.
[18] S. Narayanan and P. G. Georgiou, “Behavioral signal processing: Deriving human behavioral informatics from speech and language,” Proceedings of the IEEE, vol. 101, no. 5, pp. 1203–1233, 2013.
[19] M. P. Black, A. Katsamanis, B. R. Baucom, C.-C. Lee, A. C. Lammert, A. Christensen, P. G. Georgiou, and S. S. Narayanan, “Toward automating a human behavioral coding system for married couples interactions using speech acoustic features,” Speech Communication, vol. 55, no. 1, pp. 1–21, 2013.
[20] P. G. Georgiou, M. P. Black, A. C. Lammert, B. R. Baucom, and S. S. Narayanan, “thats aggravating, very aggravating: Is it possible to classify behaviors in couple interactions using automatically derived lexical features?” in Affective Computing and Intelligent Interaction. Springer, 2011, pp. 87–96.
[21] S.-W. Hsiao, H.-C. Sun, M.-C. Hsieh, M.-H. Tsai, H.-C. Lin, and C.-C. Lee, “A multimodal approach for automatic assessment of school prinicipals’ oral presentation during pre-service training program,” in Interspeech, 2015, pp. 2529–2533.
[22] W.-Y. Huang, S.-W. Hsiao, H.-C. Sun, M.-C. Hsieh, M.-H. Tsai, and C.-C. Lee, “Enhancement of automatic oral presentation assessment system using latent n-grams word representation and part-of-speech information,” in Interspeech, 2016, p. in press.
[23] Z. Yang, A. Metallinou, E. Erzin, and S. Narayanan, “Analysis of interaction attitudes using data-driven hand gesture phrases,” in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 699–703.
[24] A. Metallinou, Z. Yang, C.-c. Lee, C. Busso, S. Carnicke, and S. Narayanan, “The usc creativeit database of multimodal dyadic interactions: from speech and full body motion capture to continuous emotional annotations,” Language Resources and Evaluation, pp. 1–25, 2015.
[25] S. M. Carnicke, “The knebel technique: active analysis in practice,” Actor Training, pp. 99–116, 2010.
[26] R. Cowie, E. Douglas-Cowie, S. Savvidou*, E. McMahon, M. Sawey, and M. Schr¨oder, “’feeltrace’: An instrument for recording perceived emotion in real time,” in ISCA tutorial and research workshop (ITRW) on speech and emotion, 2000.
[27] P. Boersma et al., “Praat, a system for doing phonetics by computer,” Glot international, vol. 5, no. 9/10, pp. 341–345, 2002
[28] D. Ververidis, C. Kotropoulos, Emotional speech recognition: resources, features, and methods, Speech Commun. 48 (2006) 1162–1181.
[29] B. McFee et al., "librosa: Audio and music signal analysis in python." Proceedings of the 14th Python in Science Conference. 2015.
[30] A. Metallinou, A. Katsamanis, and S. Narayanan, “Tracking continuous emotional trends of participants during affective dyadic interactions using body language and speech information,” Image and Vision Computing, vol. 31, no. 2, pp. 137–152, 2013.
[31] Y. Bengio, H. Schwenk, J.-S. Sen´ecal, F. Morin, and J.-L. Gauvain, “Neural probabilistic language models,” in Innovations in Machine Learning. Springer, 2006, pp. 137–186.
[32] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in Advances in neural information processing systems, 2013, pp. 3111–3119.
[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.
[34] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language model.” in Aistats, vol. 5. Citeseer, 2005, pp. 246–252.
[35] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among languages for machine translation,” arXiv preprint arXiv:1309.4168, 2013.
[36] J. Zhu et al., "Active learning with sampling by uncertainty and density for word sense disambiguation and text classification." Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1. Association for Computational Linguistics, 2008.
[37] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image categorization,” in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, 2007, pp. 1–8.
[38] X. Peng, C. Zou, Y. Qiao, and Q. Peng, “Action recognition with stacked fisher vectors,” in Computer Vision–ECCV 2014. Springer, 2014, pp. 581–595.
[39] C. Sun and R. Nevatia, “Large-scale web video event classification by use of fisher vectors,” in Applications of Computer Vision (WACV), 2013 IEEE Workshop on. IEEE, 2013, pp. 15–22.
[40] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice,” arXiv preprint arXiv:1405.4506, 2014.
[41] F. Perronnin, J. S´anchez, and T. Mensink, “Improving the fisher kernel for large-scale image classification,” in Computer Vision–ECCV 2010. Springer, 2010, pp. 143–156.
[42] W.-C. Lin and C.-C. Lee, “A thin-slice perception of emotion? an information theoretic-based framework to identify locally emotion-rich behavior segments for global affect recognition,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 5790–5794.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 一個多模態連續情緒辨識系統與其應用於全域情感辨識之研究
2. 透過語音特徵建構基於堆疊稀疏自編碼器演算法之婚姻治療中夫妻互動行為量表自動化評分系統
3. 基於健保資料預測中風之研究並以Hadoop作為一種快速擷取特徵工具
4. 應用多任務與多模態融合技術於候用校長演講自動評分系統之建構
5. 基於多模態主動式學習法進行樣本與標記之間的關係分析於候用校長評鑑之自動化評分系統建置
6. 透過結合fMRI大腦血氧濃度相依訊號以改善語音情緒辨識系統
7. 結合fMRI之迴旋積類神經網路多層次特徵 用以改善語音情緒辨識系統
8. 針對實體化交談介面開發基於行為衡量方法於自閉症小孩之評估系統
9. 整合文本多層次表達與嵌入演講屬性之表徵學習於強健候用校長演講自動化評分系統
10. 利用聯合因素分析研究大腦磁振神經影像之時間效應以改善情緒辨識系統
11. 利用LSTM演算法基於自閉症診斷觀察量表訪談建置辨識自閉症小孩之評估系統
12. 利用多模態模型混合CNN和LSTM影音特徵以自動化偵測急診病患疼痛程度
13. 以雙向長短期記憶網路架構混和多時間粒度文字模態改善婚 姻治療自動化行為評分系統
14. 透過表演逐字稿之互動特徵以改善中文戲劇表演資料庫情緒辨識系統
15. 基於大腦靜息態迴旋積自編碼的fMRI特徵擷取器
 
* *