|
A. SRM Basics [1]T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993. [2]R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001. [3]Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012. [4]M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. PESC, 2008, June, pp. 1235-1241. [5]K. Kiyota, T. Kakishima, H. Sugimoto, and A. Chiba, “Comparison of the test result and 3D-FEM analysis at the knee point of a 60 kW SRM for a HEV,” IEEE Trans. Magn., vol. 49, no. 5, pp. 2291-2294, 2013. [6]B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013. [7]K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012. [8]M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, “Test results and torque improvement of the 50kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1327-1334, 2012. [9]T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002. [10]P. C. Desai, M. Krishnamurthy, N. Schofield, and Ali Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010. [11]D. H. Lee, T. H. Pham, and J. W. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, 2013. [12]H. Y. Yang, Y. C. Lim, and H. C. Kim, “Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4292-4300, 2013. [13]P. Pillay and W. Cai, “An investigation into vibration in switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 35, no. 3, pp. 589-596, 1999. [14]J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Electr. Power Appl., vol. 153, no. 3, pp. 348-360, 2006. [15]N. Kurihara, J. Bayless, and A. Chiba, “Noise and vibration reduction of switched reluctance motor with novel simplified current waveform to reduce force sum variation” in Proc. IEEE IEMDC, 2015, pp. 1794-1800. B. SRM Converters [16]S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991. [17]S. Sindhuja and D. Susitra, “Design of a novel high grade converter for switched reluctance motor drive using component sharing,” in Proc. IEEE ICEETS, 2013, pp. 1174-1178. [18]J. H. Choi, T. H. Kim, Y.S. K, S. B. Lim, S. J. Lee, Y. H. Kim, and J. Lee, “The finite element analysis of switched reluctance motor considering asymmetric bridge converter and DC link voltage ripple,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1640-1643, 2005. [19]FCAS20DN60BB smart power module for SRM, Available: https://www. fairchildsemi.com/datasheets/FC/FCAS20DN60BB.pdf, July 17, 2016. [20]IHCS22R60CE Two Phase Switched Reluctance Drives, Available: http://www.igbt. cn/userfiles/ipm/ihcs22r60ce_rev1.0.pdf, July 17, 2016. [21]H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 380-396, 2010. [22]A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992. [23]X. D. Xue, K. W. E. Cheng, and Y. J. Bao, “Control and integrated half bridge to winding circuit development for switched reluctance motors,” IEEE Trans. Ind. Inform., vol. 10, no. 1, pp. 109-116, 2014. [24]Y. Murai, J. Cheng, and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 78-85, 1999. [25]C. K. Pan, “A DSP-based soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering National Tsing Hua University, ROC, 2003. [26]S. Ebrahimi, V. Najmi, S. Ebrahimi, and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, 2011, pp. 125-128. [27]K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6. [28]K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Electr. Power Appl., vol. 147, no. 5, pp. 337-344, 2000. [29]H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011. [30]J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009. C. Modeling and Parameters Estimation of SRM [31]B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003. [32]M. Ayaz and A. B. Yildiz, “Control of switched reluctance motor containing a linear model,” in Proc. IEEE MED, 2006, pp. 1-6. [33]M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON, 2006, pp. 1182-1185. [34]F. L. M. dos Santos, J. Anthonis, F. Naclerio, J. J. C. Gyselinck, H. Van der Auweraer, and L. C. S. Góes, “Multiphysics NVH modeling: simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014. [35]V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014. [36]K. I. Hwu, “Development of a switched reluctance motor drive”, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001. [37]N. Khateeb, K. Muehlbauer, and D. Gerling, “Dynamic modeling of the SRM using the macromodeling approach: comparison of simulation and experiment,” in Proc. IEEE EPE, 2009, pp. 1-9. D. Commutation Instant Tuning [38]M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001. [39]C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003. [40]K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003. [41]H. M. Cheshmehbeigi, S. Yari, A. R. Yari, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives using fuzzy adaptive controller,” in Proc. EPE’09, Sep. 2009, pp.1-10. [42]S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856. [43]K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015. E. Current Control of SRM [44] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003. [45]P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562. [46]R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Electr. Power Appl., vol. 3, no. 5, pp. 453-460, 2009. [47]H. Makino, T. Kosaka, and N. Matsui, “Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET. PEMD, pp. 1-6, 2014. [48]G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218. [49]K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009. [50]I. Manolas, G. Papafotiou, and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612. [51]Z. Ruiwei, Q. Xisen, J. Liping, Z. Yingchao, Z. Tianwen, and N. Jintong, “An adaptive sliding mode current control for switched reluctance motor,” in Proc. IEEE ITEC-AP, 2014, pp. 1-6. [52]I. S. Manolas, A. X. Kaletsanos, and S. N. Manias, “Nonlinear current control technique for high performance switched reluctance machine drives,” in Proc. PESC, 2008, pp. 1229-1234. [53]S. K. Sahoo, S. K. Panda, and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. PEDS, 2005, vol. 2, pp. 1129-1134. [54]S. K. Sahoo, S. K. Panda, and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7. [55]S. K. Sahoo, S. Dasgupta, S. K. Panda, and J. X. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, vol. 2, pp. 555-564, 2012. F. Speed Control [56]T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997. [57]K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Electr. Power Appl., vol. 148, no. 4, pp. 345-352, 2001. [58]M. T. Alrifai, J. H. Chow, and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IET Electr. Power Appl., vol. 150, no. 2, pp. 193-200, 2003. [59]C. Visa, G. Abba, and R. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” in Proc. IEEE SMC, 2002, vol. 5, pp. 1-6. [60]G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270. [61]A. K. Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5. [62]J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim, and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815. [63]L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos, and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. COBEP, 2009, pp. 836-841. [64]K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002. [65]Y. Wang, T. Yin, Y. Fan, and G. Li, “Intelligent control for torque ripple minimization of SRM,” in Proc. IEEE ICEMS, 2005, vol. 1, pp. 742-747. [66]C. L. Tseng, S.Y. Wang, S.C. Chien, and C.Y. Chang, “Development of a self-tuning TSK-fuzzy speed control strategy for switched reluctance motor,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2141-2152, 2012. [67]A. Tahour, A. G. Aissaoui, and A.C. Megherbi, “Fuzzy PI control through optimization: a new method for PI control of switched reluctance motor,” in Proc. IEEE ICCS, 2012, pp. 1-7. G. Single-Phase Switch-Mode Rectifiers [68]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed. New York: John Wiley & Sons, Inc., 2003. [69]W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SECON, 1998, pp. 348-353. [70]O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, vol. 3, pp. 749-755, 2003. [71]K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori, and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36. [72]Y. S. Kim, W. Y. Sung, and B. K. Lee, “Comparative performance analysis of high density and efficiency PFC topologies,” IEEE Trans. Power Electron., vol. 29, no. 6, pp.2666-2679, 2014. [73]A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, 2011. [74]B. Singh and V. Bist, “A single sensor based PFC Zeta converter fed BLDC motor drive for fan applications,” in Proc IEEE PIC, 2012, pp. 1-6. [75]E. Babaei and M. E. Seyed Mahmoodieh, “Calculation of output voltage ripple and design considerations of SEPIC converter,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1213-1222, 2014. [76]V. Bist and B. Singh, “An adjustable-speed PFC bridgeless buck-boost converter-fed BLDC motor drive,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2665-2677, 2014. H. Applications of Energy Storage Systems [77]J. Cao and A. Emadi, “Batteries need electronics,” IEEE Trans Ind. Electron. Maga., vol. 5, no. 1, pp. 27-35, 2011. [78]M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007. [79]S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015. [80]M. Neenu and S. Muthukumaran, “A battery with ultra capacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735. [81]T. Azib, O. Bethoux, C. Marchand, and E. Berthelot, “Supercapacitors for power assistance in hybrid power source with fuel cell,” in Proc. IEEE IECON, 2009, pp. 3747-3752. [82]R. Furuta, J. Kawasaki, and K. Kondo, “Hybrid traction technologies with energy storage devices for nonelectrified railway lines,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 291-297, 2010. [83]M. Ogasa, “Application of energy storage technologies for electric railway vehicles-examples with hybrid electric railway vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 304-311, 2010. [84]M. Hino and D. Hara, “Application of an energy storage system using lithium-ion batteries for more effective regenerative energy utilization,” JR EAST Technical Review, No. 31, spring 2015, pp. 23-26. Available: https://www.jreast.co.jp/e/ development/tech/pdf_31/tec-31-23-26eng.pdf, August 06, 2016. [85]M. Steiner, M. Klohr, and S. Pagiela, “Energy storage system with ultracaps on board of railway vehicles,” in Proc. IEEE PAE, 2007, pp. 1-10. [86]D. Iannuzzi and P. Tricoli, “Metro trains equipped onboard with supercapacitors: a control technique for energy saving,” in Proc. IEEE SPEEDAM, 2010, pp. 750-756. [87]S. Tominaga, I. Suga, H. Araki, H. Ikejima, M. Kusuma, and K. Kobayashi, “Development of energy-saving elevator using regenerated power storage system,” in Proc. IEEE PCC-Osaka, 2002, pp. 890-895. [88]N. Jabbour, C. Mademlis, and I. Kioskeridis, “Improved performance in a supercapacitor-based energy storage control system with bidirectional DC-DC converter for elevator motor drives,” in Proc. IET PEMD, 2014, pp. 1-6
|