帳號:guest(18.189.184.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳昱緯
作者(外文):Wu, Yu Wei
論文名稱(中文):具能源支撐直流鏈之雙向切換式整流器供電切換式磁阻馬達驅動系統
論文名稱(外文):ON A BIDIRECTIONAL SWITCH-MODE RECTIFIER FED SWITCHED RELUCTANCE MOTOR DRIVE WITH ENERGY SUPPORT DC-LINK
指導教授(中文):鐘太郎
廖聰明
指導教授(外文):Jong, Tai Lang
Liaw, Chang Ming
口試委員(中文):黃昌圳
楊士進
口試委員(外文):Hwang, Chang Chou
Yang, Shih Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061613
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:114
中文關鍵詞:切換式磁阻馬達切換式整流器功因校正直流-直流轉換器升壓電流控制速度控制數位訊號處理器
外文關鍵詞:Switched-reluctance motorswitch-mode rectifierpower factor correctionDC-DC convertervoltage boostingcurrent controlspeed controlDSP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:452
  • 評分評分:*****
  • 下載下載:26
  • 收藏收藏:0
本論文旨在開發一具直流鏈能源支撐之雙向切換式整流器供電切換式磁阻馬達驅動系統。在探究切換式磁阻馬達驅動系統之基礎及關鍵事務後,先建構一具二極體整流器前級之切換式磁阻馬達驅動系統,以作為研究測試平台。實測評估驗證其具良好操作性能,含加速、減速及正反轉等操作特性。
接著,開發具功因校正之雙向操作交流/直流轉換器,以達成切換式磁阻馬達驅動系統與市電間之雙向操作。其包含一全橋切換式整流器及一單臂降/昇壓型直流-直流轉換器。在驅動模式下,可升與調節良好之直流鏈電壓,使切換式磁阻馬達驅動系統具改善之高速驅動性能,同時,保有良好之入電電力品質。而於再生煞車下,藉由適當之換相時刻設定及控制,可將馬達之儲存動能成功回送至電網。
最後,本論文設計實作一直流鏈能源支撐系統。利用降-昇/降-昇雙向直流/直流介面轉換器,使馬達驅動直流鏈得以由可收集之直流源或儲能裝置支撐能源。儲能裝置可利用市電充電或吸收馬達之再生煞車能量。此外,儲能裝置可藉由所建構之介面轉換器支撐馬達直流鏈,以所提控制方法同時由市電及電池並聯供給馬達所需能量。在馬達閒置下,所建構介面轉換器及單相全橋變頻器可產出具良好波形之220/60Hz 交流電源,以執行電池至電網之放能應用。所開發各功率級之操作性能,均以實測結果驗證之。
This thesis develops a switched-reluctance motor (SRM) drive powered by a bidirectional switch-mode rectifier (SMR) and equipped with an energy support DC-link. After exploring some basics and key issues of SRM drive, a basic SRM drive with diode rectifier front-end is first established and employed as the test platform. The experimental evaluation is made to verify its satisfactory driving performance in acceleration, deceleration, and reversible operations.
Second, to conduct bidirectional operation between the SRM drive and the mains, a power factor corrected (PFC) bilateral AC/DC converter is developed. It consists of an H-bridge SMR and an one-leg buck/boost converter. In driving mode, the boosted and well-regulated SRM drive DC-link voltage is established to enhance the motor driving performance under higher speeds. Meanwhile, good line drawn power quality is obtained. Conversely in regenerative braking operation, the recovered kinetic stored energy can be successfully sent back to the mains via proper commutation setting and controls.
Third, a DC-link energy support system (ESS) is designed and implemented. A buck-boost/buck-boost bidirectional interface DC/DC converter is employed to let the motor drive DC-link be supported energy from possible harvested DC sources or energy storage devices. The latter can also be made the auxiliary charging from the mains, or to absorb the regenerative braking energy. In idle case, the 220V/60Hz AC output voltages with good waveform quality can also be generated for battery-to-grid (B2G) applications from the battery via the established interface converter and single-phase H-bridge inverter. Some experimental results are provided to demonstrate the operating characteristics of all power stages in various conditions.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES xii
LIST OF SYMBOLS xiii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF AC POWERED SWITCHED-RELUCTANCE MOTOR DRIVE 6
2.1 Introduction 6
2.2 Structures and Operations of SRM 6
2.3 Physical Modeling 7
2.4 Key Issues of SRM Motor Drive 13
2.5 Some SRM Converters 14
2.6 SRM Possible Front-End Converters 20
2.7 Energy Storage Devices and Their Applications in Motor Drives 23
2.7.1 Energy Storage Devices 23
2.7.2 Applications of Energy Storage System 24
CHAPTER 3 DSP-BASED DIODE RECTIFIER-FED SWITCHED-RELUCTANCE MOTOR DRIVE 26
3.1 Introduction 26
3.2 System Configuration 26
3.3 Digital Control Environment 29
3.4 Control Scheme 34
3.5 Experimental Performance Evaluation 38
CHAPTER 4 DEVELOPMENT OF A BIDIRECTIONAL SMR-FED SRM DRIVE WITH NERGY SUPPORT DC-LINK 54
4.1 Introduction 54
4.2 General Concept of a Single-phase SMR 54
4.3 Bidirectional Buck/boost Interface DC/DC Converter 56
4.3.1 Buck Converter in Driving Mode 56
4.3.2 Boost Converter in Braking Mode 58
4.4 The Developed H-bridge SMR 60
4.5 Interface DC/DC Converter in Buck Mode 68
4.6 SRM Drive with Two-stage H-bridge SMR Front-end 69
4.7 SMR-fed SRM Drive With Battery Support DC-link 87
CHAPTER 5 GRID CONNECTED OPERATION OF THE DEVELOPED ENERGY SUPPORT SCHEME 92
5.1 Introduction 92
5.2 Single-phase SPWM Inverters 92
5.3 Energy Support Scheme 94
5.3.1 Discharging Mode 94
5.3.2 Charging Mode 97
5.4 Grid Connected B2G Operation 98
5.4.1 System Configuration 98
5.4.2 Control Schemes 99
5.4.3 Measured Result 100
5-5 G2B Charging Mode 103
5.5.1 System Configuration 103
5.5.2 Control Schemes 104
5.5.3 Measured Results 105
CHAPTER 6 CONCULSIONS 107
REFERENCES 108
A. SRM Basics
[1]T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[2]R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[3]Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[4]M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. PESC, 2008, June, pp. 1235-1241.
[5]K. Kiyota, T. Kakishima, H. Sugimoto, and A. Chiba, “Comparison of the test result and 3D-FEM analysis at the knee point of a 60 kW SRM for a HEV,” IEEE Trans. Magn., vol. 49, no. 5, pp. 2291-2294, 2013.
[6]B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
[7]K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[8]M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, “Test results and torque improvement of the 50kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1327-1334, 2012.
[9]T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[10]P. C. Desai, M. Krishnamurthy, N. Schofield, and Ali Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
[11]D. H. Lee, T. H. Pham, and J. W. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, 2013.
[12]H. Y. Yang, Y. C. Lim, and H. C. Kim, “Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4292-4300, 2013.
[13]P. Pillay and W. Cai, “An investigation into vibration in switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 35, no. 3, pp. 589-596, 1999.
[14]J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Electr. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[15]N. Kurihara, J. Bayless, and A. Chiba, “Noise and vibration reduction of switched reluctance motor with novel simplified current waveform to reduce force sum variation” in Proc. IEEE IEMDC, 2015, pp. 1794-1800.
B. SRM Converters
[16]S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[17]S. Sindhuja and D. Susitra, “Design of a novel high grade converter for switched reluctance motor drive using component sharing,” in Proc. IEEE ICEETS, 2013, pp. 1174-1178.
[18]J. H. Choi, T. H. Kim, Y.S. K, S. B. Lim, S. J. Lee, Y. H. Kim, and J. Lee, “The finite element analysis of switched reluctance motor considering asymmetric bridge converter and DC link voltage ripple,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1640-1643, 2005.
[19]FCAS20DN60BB smart power module for SRM, Available: https://www. fairchildsemi.com/datasheets/FC/FCAS20DN60BB.pdf, July 17, 2016.
[20]IHCS22R60CE Two Phase Switched Reluctance Drives, Available: http://www.igbt. cn/userfiles/ipm/ihcs22r60ce_rev1.0.pdf, July 17, 2016.
[21]H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 380-396, 2010.
[22]A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[23]X. D. Xue, K. W. E. Cheng, and Y. J. Bao, “Control and integrated half bridge to winding circuit development for switched reluctance motors,” IEEE Trans. Ind. Inform., vol. 10, no. 1, pp. 109-116, 2014.
[24]Y. Murai, J. Cheng, and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 78-85, 1999.
[25]C. K. Pan, “A DSP-based soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering National Tsing Hua University, ROC, 2003.
[26]S. Ebrahimi, V. Najmi, S. Ebrahimi, and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, 2011, pp. 125-128.
[27]K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6.
[28]K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Electr. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[29]H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[30]J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
C. Modeling and Parameters Estimation of SRM
[31]B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[32]M. Ayaz and A. B. Yildiz, “Control of switched reluctance motor containing a linear model,” in Proc. IEEE MED, 2006, pp. 1-6.
[33]M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON, 2006, pp. 1182-1185.
[34]F. L. M. dos Santos, J. Anthonis, F. Naclerio, J. J. C. Gyselinck, H. Van der Auweraer, and L. C. S. Góes, “Multiphysics NVH modeling: simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014.
[35]V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014.
[36]K. I. Hwu, “Development of a switched reluctance motor drive”, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[37]N. Khateeb, K. Muehlbauer, and D. Gerling, “Dynamic modeling of the SRM using the macromodeling approach: comparison of simulation and experiment,” in Proc. IEEE EPE, 2009, pp. 1-9.
D. Commutation Instant Tuning
[38]M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[39]C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[40]K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[41]H. M. Cheshmehbeigi, S. Yari, A. R. Yari, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives using fuzzy adaptive controller,” in Proc. EPE’09, Sep. 2009, pp.1-10.
[42]S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[43]K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
E. Current Control of SRM
[44] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[45]P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562.
[46]R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Electr. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[47]H. Makino, T. Kosaka, and N. Matsui, “Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET. PEMD, pp. 1-6, 2014.
[48]G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218.
[49]K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[50]I. Manolas, G. Papafotiou, and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612.
[51]Z. Ruiwei, Q. Xisen, J. Liping, Z. Yingchao, Z. Tianwen, and N. Jintong, “An adaptive sliding mode current control for switched reluctance motor,” in Proc. IEEE ITEC-AP, 2014, pp. 1-6.
[52]I. S. Manolas, A. X. Kaletsanos, and S. N. Manias, “Nonlinear current control technique for high performance switched reluctance machine drives,” in Proc. PESC, 2008, pp. 1229-1234.
[53]S. K. Sahoo, S. K. Panda, and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. PEDS, 2005, vol. 2, pp. 1129-1134.
[54]S. K. Sahoo, S. K. Panda, and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
[55]S. K. Sahoo, S. Dasgupta, S. K. Panda, and J. X. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, vol. 2, pp. 555-564, 2012.
F. Speed Control
[56]T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[57]K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Electr. Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
[58]M. T. Alrifai, J. H. Chow, and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IET Electr. Power Appl., vol. 150, no. 2, pp. 193-200, 2003.
[59]C. Visa, G. Abba, and R. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” in Proc. IEEE SMC, 2002, vol. 5, pp. 1-6.
[60]G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[61]A. K. Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5.
[62]J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim, and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
[63]L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos, and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. COBEP, 2009, pp. 836-841.
[64]K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[65]Y. Wang, T. Yin, Y. Fan, and G. Li, “Intelligent control for torque ripple minimization of SRM,” in Proc. IEEE ICEMS, 2005, vol. 1, pp. 742-747.
[66]C. L. Tseng, S.Y. Wang, S.C. Chien, and C.Y. Chang, “Development of a self-tuning TSK-fuzzy speed control strategy for switched reluctance motor,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2141-2152, 2012.
[67]A. Tahour, A. G. Aissaoui, and A.C. Megherbi, “Fuzzy PI control through optimization: a new method for PI control of switched reluctance motor,” in Proc. IEEE ICCS, 2012, pp. 1-7.
G. Single-Phase Switch-Mode Rectifiers
[68]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed. New York: John Wiley & Sons, Inc., 2003.
[69]W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SECON, 1998, pp. 348-353.
[70]O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, vol. 3, pp. 749-755, 2003.
[71]K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori, and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
[72]Y. S. Kim, W. Y. Sung, and B. K. Lee, “Comparative performance analysis of high density and efficiency PFC topologies,” IEEE Trans. Power Electron., vol. 29, no. 6, pp.2666-2679, 2014.
[73]A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, 2011.
[74]B. Singh and V. Bist, “A single sensor based PFC Zeta converter fed BLDC motor drive for fan applications,” in Proc IEEE PIC, 2012, pp. 1-6.
[75]E. Babaei and M. E. Seyed Mahmoodieh, “Calculation of output voltage ripple and design considerations of SEPIC converter,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1213-1222, 2014.
[76]V. Bist and B. Singh, “An adjustable-speed PFC bridgeless buck-boost converter-fed BLDC motor drive,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2665-2677, 2014.
H. Applications of Energy Storage Systems
[77]J. Cao and A. Emadi, “Batteries need electronics,” IEEE Trans Ind. Electron. Maga., vol. 5, no. 1, pp. 27-35, 2011.
[78]M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
[79]S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[80]M. Neenu and S. Muthukumaran, “A battery with ultra capacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735.
[81]T. Azib, O. Bethoux, C. Marchand, and E. Berthelot, “Supercapacitors for power assistance in hybrid power source with fuel cell,” in Proc. IEEE IECON, 2009, pp. 3747-3752.
[82]R. Furuta, J. Kawasaki, and K. Kondo, “Hybrid traction technologies with energy storage devices for nonelectrified railway lines,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 291-297, 2010.
[83]M. Ogasa, “Application of energy storage technologies for electric railway vehicles-examples with hybrid electric railway vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 304-311, 2010.
[84]M. Hino and D. Hara, “Application of an energy storage system using lithium-ion batteries for more effective regenerative energy utilization,” JR EAST Technical Review, No. 31, spring 2015, pp. 23-26. Available: https://www.jreast.co.jp/e/ development/tech/pdf_31/tec-31-23-26eng.pdf, August 06, 2016.
[85]M. Steiner, M. Klohr, and S. Pagiela, “Energy storage system with ultracaps on board of railway vehicles,” in Proc. IEEE PAE, 2007, pp. 1-10.
[86]D. Iannuzzi and P. Tricoli, “Metro trains equipped onboard with supercapacitors: a control technique for energy saving,” in Proc. IEEE SPEEDAM, 2010, pp. 750-756.
[87]S. Tominaga, I. Suga, H. Araki, H. Ikejima, M. Kusuma, and K. Kobayashi, “Development of energy-saving elevator using regenerated power storage system,” in Proc. IEEE PCC-Osaka, 2002, pp. 890-895.
[88]N. Jabbour, C. Mademlis, and I. Kioskeridis, “Improved performance in a supercapacitor-based energy storage control system with bidirectional DC-DC converter for elevator motor drives,” in Proc. IET PEMD, 2014, pp. 1-6
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *