帳號:guest(3.149.26.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴柏村
作者(外文):Lai,Po-Tsun
論文名稱(中文):針對實體化交談介面開發基於行為衡量方法於自閉症小孩之評估系統
論文名稱(外文):Toward automatic assessment of child with autism using embodied conversational agents based on behavior-based measurement
指導教授(中文):李祈均
指導教授(外文):Lee,Chi-Chun
口試委員(中文):冀泰石
劉奕汶
曹昱
口試委員(外文):Chi,Tai-Shih
Liu,Yi-Wen
Tsao,Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061610
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:泛自閉症障礙實體化交談介面自閉症診斷觀察量表人類行為訊號處理
外文關鍵詞:Autism spectrum disorderEmbodied conversational agentsAutism diagnostic observation scheduleBehavioral signal processing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:855
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
泛自閉症障礙在諸多醫學研究中常被指出有社交活動、溝通困難、或者重複行為的問題,導致語言和非語言的行為表現上特別不善於處理。而實體化交談介面於多方領域研究中,表明是可以改善關於社交能力、溝通技巧、或是特定群體不擅長項目,在自閉症案例裡時常被用來解決自閉症患者的普遍性問題,像是幫助和促進自閉症患者在自然行為上的表現,包括口語、情緒識別、肢體動作。此外為了解自閉症的症狀程度,泛自閉症障礙者都會擁有由訓練有素的專業醫生評量的標準化觀察行為量表分數,通常於特定的情境中用來衡量小孩在溝通、社交互動以及綜合能力之三大核心領域的反應。然而,現今人工評量的方式有人為因素、耗時或不易擴展的問題,使得多數資訊無法有效被利用。因此在本文中,為實現自動化自閉症評估系統以及大規模執行,設計了一種系統架構在實體化交談介面上來進行解決,並開發基於行為衡量方法,用以幫助人們早期發現自閉症的症狀。而整體系統架構是由一種低階多模態訊號特徵、中階行為特徵和高階之自閉症診斷觀察量表三者所組成的關聯模式,且應用人類行為訊號處理技術的概念實作。最後,希望藉由數位科技的支持下,期望能夠給予於人們更便利的診斷工具,或者提供專家在決策上的客觀參考,以改善人們的日常生活。
In medical research, autism spectrum disorder (ASD) is known as having social problems such as social interaction deficit, difficulties of communication, and repetitive behavior. Especially for the children, people with ASD have difficulties on dealing with verbal and non-verbal cues in social interaction. Some research indicate that embodied conversational agents (ECA) is helpful for improving social capabilities, or communication skills. In the case of autism, ECA is often used to solve the general problem in children with autism. For example, it can be used to elicit the natural behavioral performance of the autism patients, including verbal, emotion recognition, or body movement. To evaluate the syndrome in autism spectrum, a gold standard diagnostic tools-Autism diagnostic observation schedule (ADOS) is used to assess the severity of autism in clinical assessment of ASD. ADOS is usually conducted by professionals that are familiar with autistic disorders, and it measures social impairments in three core developmental domains: communication, reciprocal social interaction, communication and social. However, because there are existing problems like subjective evaluation, time-consuming, and non-scalable in manually assessment method, most of the information cannot be effectively utilized. Therefore, in this paper, we design an automatic assessment system based on behavior-based measurement to provide an early diagnosis with using ECA, and realize an automation autism diagnostic framework by behavioral signal processing (BSP) technique which consists of low-level multimodal signal feature, mid-level behavior feature, and high-level ADOS score. In the future, we expect to provide more convenient diagnostic tools to experts with decision-making objective reference and improve people's daily lives.
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 v
表目錄 vi
一、 序論 1
二、 研究 5
2.1 Rachel資料庫 6
2.2 自定義行為標記 7
2.3 語言和非語言行為描述 9
2.3.1 聲音行為特徵 10
2.3.2 全局動作行為特徵 13
2.3.3 臉部表達行為特徵 16
2.3.4 敘事行為特徵 20
2.4 基於時域特性之全時整合編碼 22
2.4.1 詞袋模型 22
2.4.2 費雪向量 23
2.4.3 局部聚合描述符向量 25
2.4.4 泛函數 27
三、 實驗 28
3.1 實驗細節說明 30
3.2 自定義行為辨識 33
3.3 由訊號生成行為特徵之自動辨識 37
3.4 訊號特徵辨識 42
四、 結論 45
參考文獻 47
[1] Narayanan, Shrikanth, and Panayiotis G. Georgiou. “Behavioral signal processing: Deriving human behavioral informatics from speech and language.” Proceedings of the IEEE, vol.101, no.5, pp.1203-1233, 2013.
[2] Chen, Wei-Chen, et al. “Multimodal arousal rating using unsupervised fusion technique.” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp.5296-5300, 2015.
[3] Delaherche, Emilie, et al. “Assessment of the communicative and coordination skills of children with autism spectrum disorders and typically developing children using social signal processing.” Research in Autism Spectrum Disorders, vol.7, no.6, pp.741-756, 2013.
[4] Hsiao, Shan-Wen, et al. “A Multimodal Approach for Automatic Assessment of School Principals' Oral Presentation During Pre-Service Training Program.” Sixteenth Annual Conference of the International Speech Communication Association. 2015.
[5] Black, Matthew P., et al. “Toward automating a human behavioral coding system for married couples’ interactions using speech acoustic features.” Speech Communication, vol.55, no.1, pp.1-21, 2013.
[6] P. Association, “Diagnostic and statistical manual of mental disorders (4th ed., text rev.).” American Psychiatric Publishing, Inc., 2000.
[7] Botturi, Luca, Chiara Bramani, and Sara Corbino. “Digital storytelling for social and international development: from special education to vulnerable children.” International Journal of Arts and Technology, vol.7, no.1, pp.92-111, 2014.
[8] Even, Cindy, et al. “Supporting Social Skills Rehabilitation with Virtual Storytelling.” Twenty-Ninth International Florida Artificial Intelligence Research Society Conference. AAAI publications, pp.329-334, 2016.
[9] Ring, Lazlo, et al. “Addressing loneliness and isolation in older adults: Proactive affective agents provide better support.” Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association Conference on. IEEE, pp.61-66, 2013.
[10] Tartaro, Andrea, and Justine Cassell. “Playing with virtual peers: bootstrapping contingent discourse in children with autism.” Proceedings of the 8th international conference on International conference for the learning sciences-Volume 2. International Society of the Learning Sciences, pp.382-389, 2008.
[11] Anderson, Keith, et al. “The TARDIS framework: intelligent virtual agents for social coaching in job interviews.” Advances in computer entertainment. Springer International Publishing, pp.476-491, 2013.
[12] Tartaro, Andrea, and Justine Cassell. “Using virtual peer technology as an intervention for children with autism.” Towards universal usability: designing computer interfaces for diverse user populations. Chichester: John Wiley, vol.231, pp.62, 2007.
[13] S. S. Narayanan and A. Potamianos, “Creating conversational interfaces for children,” IEEE Transactions on Speech and Audio Processing, vol.10, no. 2, pp. 65–78, 2002.
[14] Mower, Emily, et al. “Rachel: Design of an emotionally targeted interactive agent for children with autism.” Multimedia and Expo (ICME), 2011 IEEE International Conference on. IEEE, pp.1-6, 2011.
[15] Lord, Catherine, et al. “The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism.” Journal of autism and developmental disorders, vol.30, no.3, pp.205-223, 2000.
[16] Lord, Catherine, et al. “Austism diagnostic observation schedule: A standardized observation of communicative and social behavior.” Journal of autism and developmental disorders, vol.19, no.2, pp.185-212, 1989.
[17] Akshoomoff, Natacha, Christina Corsello, and Heather Schmidt. “The role of the autism diagnostic observation schedule in the assessment of autism spectrum disorders in school and community settings.” The California School Psychologist, vol.11, no.1, pp.7-19, 2006.
[18] Baucom, Brian R., and Esti Iturralde. “A behaviorist manifesto for the 21 st century,” Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific. IEEE, pp.1-4, 2012.
[19] Lord, Catherine, Michael Rutter, and Ann Le Couteur. “Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.” Journal of autism and developmental disorders, vol.24, no.5, pp.659-685, 1994.
[20] Bailly, Gérard, Stephan Raidt, and Frédéric Elisei. “Gaze, conversational agents and face-to-face communication.” Speech Communication, vol.52, no.6, pp.598-612, 2010.
[21] Bal, Elgiz, et al. “Emotion recognition in children with autism spectrum disorders: Relations to eye gaze and autonomic state.” Journal of autism and developmental disorders, vol.40, no.3, pp.358-370, 2010.
[22] de Marchena, Ashley, and Inge‐Marie Eigsti. “Conversational gestures in autism spectrum disorders: Asynchrony but not decreased frequency.” Autism research, vol.3, no.6, pp.311-322, 2010.
[23] Bellard, Fabrice, et.al. “FFmpeg.” Availabel from: https://ffmpeg.org/.
[24] Boersma, Paul. “Praat, a system for doing phonetics by computer.” Glot international, vol.5, no.9/10, pp.341-345, 2002.
[25] McFee, Brian, et al. “librosa: Audio and music signal analysis in python.” Proceedings of the 14th Python in Science Conference. 2015.
[26] Davis, Steven, and Paul Mermelstein. “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences.” IEEE transactions on acoustics, speech, and signal processing, vol.28, no.4, pp. 357-366, 1980.
[27] Boersma, Paul. “Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound.” Proceedings of the institute of phonetic sciences. vol.17, no.1193, pp.97-110, 1993.
[28] Wang, Heng, et al. “Action recognition by dense trajectories.” Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, pp.3169-3176, 2011.
[29] Wang, Heng, and Cordelia Schmid. “Action recognition with improved trajectories.” Proceedings of the IEEE International Conference on Computer Vision., pp.3551-3558, 2013.
[30] Baraldi, Lorenzo, et al. “Gesture recognition in ego-centric videos using dense trajectories and hand segmentation.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops., pp.688-693, 2014.
[31] Baltru, Tadas, Peter Robinson, and Louis-Philippe Morency. “OpenFace: an open source facial behavior analysis toolkit.” 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, pp.1-10, 2016.
[32] Baltrusaitis, Tadas, Peter Robinson, and Louis-Philippe Morency. “Constrained local neural fields for robust facial landmark detection in the wild.” Proceedings of the IEEE International Conference on Computer Vision Workshops., pp.354-361, 2013.
[33] Wood, Erroll, et al. “Rendering of eyes for eye-shape registration and gaze estimation.” 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, pp.3756-3764, 2015.
[34] Baltrušaitis, Tadas, Marwa Mahmoud, and Peter Robinson. “Cross-dataset learning and person-specific normalisation for automatic Action Unit detection.” Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on, IEEE, vol.6, pp.1-6, 2015.
[35] Matthews, Iain, and Simon Baker. “Active appearance models revisited.” International Journal of Computer Vision, vol.60, no.2, pp.135-164, 2004.
[36] Cambria, Erik, and Bebo White. “Jumping NLP curves: a review of natural language processing research [review article].” IEEE Computational Intelligence Magazine, vol.9, no.2, pp.48-57, 2014.
[37] Justice, Laura M., et al. “A scalable tool for assessing children's language abilities within a narrative context: The NAP (Narrative Assessment Protocol).” Early Childhood Research Quarterly, vol.25, no.2, pp.218-234, 2010.
[38] Loria, Steven. “TextBlob: simplified text processing.” Secondary TextBlob: Simplified Text Processing (2014).
[39] Csurka, Gabriella, et al. “Visual categorization with bags of keypoints.” Workshop on statistical learning in computer vision, ECCV, vol.1, no.1-22, 2004.
[40] Sivic, Josef, and Andrew Zisserman. “Efficient visual search of videos cast as text retrieval.” IEEE transactions on pattern analysis and machine intelligence, vol.31, no.4, pp. 591-606, 2009
[41] Perronnin, Florent, and Christopher Dance. “Fisher kernels on visual vocabularies for image categorization.” 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp.1-8, 2007.
[42] Perronnin, Florent, Jorge Sánchez, and Thomas Mensink. “Improving the fisher kernel for large-scale image classification.” European conference on computer vision. Springer Berlin Heidelberg, pp.143-156, 2010.
[43] Jégou, Hervé, et al. “Aggregating local descriptors into a compact image representation.” Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, pp.3304-3311, 2010.
[44] Bone, Daniel, et al. “Intoxicated Speech Detection by Fusion of Speaker Normalized Hierarchical Features and GMM Supervectors.” INTERSPEECH, pp.3217-3220, 2011.
[45] Csurka, Gabriela, and Florent Perronnin. “Fisher vectors: Beyond bag-of-visual-words image representations.” International Conference on Computer Vision, Imaging and Computer Graphics. Springer Berlin Heidelberg, 2010.
[46] Sánchez, Jorge, et al. “Image classification with the fisher vector: Theory and practice.” International journal of computer vision, vol.105, no.3, pp.222-245, 2013.
[47] Platt, John. “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.” Advances in large margin classifiers, vol.10, no.3, pp.61-74, 1999.
[48] Schuller, Björn, Stefan Steidl, and Anton Batliner. “The INTERSPEECH 2009 emotion challenge.” INTERSPEECH, vol. 2009, pp.312-315, 2009.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用LSTM演算法基於自閉症診斷觀察量表訪談建置辨識自閉症小孩之評估系統
2. 透過語音特徵建構基於堆疊稀疏自編碼器演算法之婚姻治療中夫妻互動行為量表自動化評分系統
3. 基於健保資料預測中風之研究並以Hadoop作為一種快速擷取特徵工具
4. 一個利用人類Thin-Slice情緒感知特性所建構而成之全時情緒辨識模型新框架
5. 應用多任務與多模態融合技術於候用校長演講自動評分系統之建構
6. 基於多模態主動式學習法進行樣本與標記之間的關係分析於候用校長評鑑之自動化評分系統建置
7. 透過結合fMRI大腦血氧濃度相依訊號以改善語音情緒辨識系統
8. 結合fMRI之迴旋積類神經網路多層次特徵 用以改善語音情緒辨識系統
9. 一個多模態連續情緒辨識系統與其應用於全域情感辨識之研究
10. 整合文本多層次表達與嵌入演講屬性之表徵學習於強健候用校長演講自動化評分系統
11. 利用聯合因素分析研究大腦磁振神經影像之時間效應以改善情緒辨識系統
12. 利用多模態模型混合CNN和LSTM影音特徵以自動化偵測急診病患疼痛程度
13. 以雙向長短期記憶網路架構混和多時間粒度文字模態改善婚 姻治療自動化行為評分系統
14. 透過表演逐字稿之互動特徵以改善中文戲劇表演資料庫情緒辨識系統
15. 基於大腦靜息態迴旋積自編碼的fMRI特徵擷取器
 
* *