帳號:guest(18.191.222.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡誌廷
作者(外文):Chien, Chih Ting
論文名稱(中文):動作電位的突波感測研究與電路設計
論文名稱(外文):The Development of Spike Detection for Action Potential and Circuit Design
指導教授(中文):陳新
指導教授(外文):Chen, Hsin
口試委員(中文):謝秉璇
彭盛裕
口試委員(外文):Hsieh, Ping Hsuan
Peng, Sheng Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061594
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:動作電位突波感測深腦部刺激非線性能量運算
外文關鍵詞:Action PotentialSpike DetectionDeep Brain StimulationNonlinear Energy Operator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:209
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
隨著高齡化社會的來臨,神經的老化所造成的疾病變得普遍。由於神經元的退化,使得神經元產生訊號傳遞變得異常,將導致病患身體顫抖、感覺不良以及動作遲緩等症狀。動作電位中是一個神經元活性的指標,透過偵測特定神經元活動的情形,並且即時診斷,藉由提供電刺激,來有效地活化神經細胞的活性。
近年來,一些研究團隊致力於腦機介面系統的開發。腦機介面系統整合了一些不同的功能,前端部分有紀錄單元以及刺激單元,可以分別接收神經訊號以及給予電能量刺激神經細胞,藉由紀錄單元讀取到的神經訊號,給予後端算術邏輯單元做即時性的診斷,適合應用於運動復健以及脊髓損傷的治療。
為了能做即時性的診斷及治療,盡可能將前端部分植入病患體內,而控制以及供電則以無線傳輸方式,以避免穿過病患的表皮造成不必要的感染,植入式裝置必須要降低電壓,以減少功率的消耗。本論文提出可在1V的供應電壓下,接收來自神經約0.01mV的動作電位訊號,經由本系統演算分析後可以在輸出將突波訊號轉換為300mV的脈衝突波,且僅需要定義一個閥值電壓就可以判斷訊號中是否發生突波,提高偵測突波的正確性,以利整合在腦機介面系統中。
本系統以TSMC 0.18μm CMOS製程實現電路,經由模擬以及下線後晶片量測驗證比較及分析,並提出可以更進一步改良的部分。
Because of the coming of aging society, the disease caused by neuron degeneration is more common than before. Because neuron degenerate, signal transmission between different neurons become abnormal. Patients will suffer from symptoms such as tremor, paresthesia and bradykinesia. The action potential signal is an indicator of neuronal activity. With detection and diagnosis of specific region neuronal activity in the same time, we can use stimulators to let the neuron cells normal.
In recent year, some research teams focus on the development of Brain Machine Interface (BMI) including some different functions. The front-end unit consisting of both recording unit and stimulator can receive signal from and stimulate energy to neuron of the patient. By recording neuron signal from recording unit, the Arithmetic Logic unit (ALU) of the BMI system can give a diagnosis immediately and apply to the treatment of motor habitation or spinal cord injury.
For immediate diagnosis and treatment, it should let the fronts end part implanted into the body of patient to prevent patient from infection. The device should operate at lower voltage to reduce power consumption. This work proposed in this thesis can receive the action potential signal of 0.01mV from neuron and use the algorithm to let spike signal transform to impulse waveform of 300mV with supply voltage of 1V. And this work can detect spike by single threshold voltage and can improve accuracy on spike detection to integrate to the BMI system beneficially.
This work has been designed and fabricated with the TSMC 0.18μm process. The measurement results are presented and discussed in this thesis.
摘要 I
ABSTRACT III
致謝 V
目錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 研究背景 1
1.2 研究貢獻 3
1.3 章節概述 3
第二章 文獻回顧 4
2.1 動作電位成因介紹 4
2.2 單一閥值偵測 7
2.2.1 非線性能量運算子(NEO) 7
2.3 雙閥值偵測 10
2.3.1 使用D型正反器觸發 10
2.3.2 使用轉換電流模式 11
2.4 自動閥值偵測 13
2.4.1 使用移動方均根及平均值 13
2.5 總結 15
第三章 方法模擬與探討 17
3.1 非線性能量運算的模擬 19
3.1.1 連續訊號演算(類比方式) 19
3.1.2 離散訊號演算(數位方式) 21
3.1.3 連續與離散關係與探討 24
3.2 自動閥值偵測模擬 26
3.3 非線性能量運算的改善 27
3.4 討論與總結比較 31
第四章 積體電路設計 33
4.1 系統電路架構 33
4.2 濾波器規格設定 34
4.3 微分器設計 37
4.4 轉導放大器設計 40
4.5 類比乘法器設計 48
4.6 轉導放大器及類比乘法器之共模迴授電路 55
4.7 運算放大器設計 56
4.8 儀表放大器規格設定 58
4.9 模擬結果 59
4.9.1 第一版晶片模擬結果 67
4.9.2 第二版晶片模擬結果 70
第五章 晶片布局與量測 74
5.1 晶片布局 74
5.1.1 第一版晶片 74
5.1.2 第二版晶片 77
5.2 量測平台 78
5.3 電路功能驗證 79
5.3.1 低通濾波器 80
5.3.2 微分器 82
5.3.3 類比乘法器 85
5.4 總電路量測結果 86
第六章 結論與未來展望 89
6.1 結論 89
6.2 未來研究方向 90
參考文獻 92
[1] RAHUL SARPESHKAR, RICHARD F. LYON, AND CARVER MEAD,
”A Low-Power Wide-Linear-Range Transconductance Amplifier”, Analog Integrated Circuits and Signal Processing, 13, 123–151 1997
[2] Xilin Liu, Milin Zhang, Andrew G. Richardsony, Timothy H. Lucasy, and Jan Van der Spiegel, “A 12-Channel Bidirectional Neural Interface Chip with Integrated Channel-level Feature Extraction and PID Controller for Closed-loop Operation”
[3] R. R. Harrison, “A Versatile Integrated Circuit for the Acquisition of Biopotentials,” 2007 IEEE Cust. Integr. Circuits Conf., no. Cicc, pp. 115–122, 2007.
[4] 王宗曄,可記錄多通道神經訊號之低雜訊低功耗放大器設計
[5] R. R. Harrison, C. Charles, and S. Member, “A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, 2003.
[6] Joon Hwan Choi, Hae Kyung Jung, and Taejeong Kim “A New Action Potential Detector Using the MTEO and Its Effects on Spike Sorting Systems at Low Signal-to-Noise Ratios” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 4, APRIL 2006
[7] H. Li and Q. Xu “Sub-threshold-based ultra-low-power neural spike detector”
[8] Alberto Pesauento Christof Koch “A wide linear range four quadrant multiplier in subthreshold CMOS”
[9] Petros Mamgos,' James F. Kaiser12 and Thomas F. Quatieri ,” On separating amplitude from frequency modulations using energy operator”
[10] A. Bonfanti, T. Borghi, R. Gusmeroli, G. Zambra, A. Oliyink , L. Fadiga, A. S. Spinelli, and G. Baranauskas ,” A Low-Power Integrated Circuit for Analog Spike Detection and Sorting in Neural Prosthesis Systems”
[11] Majid Jalalifar, Gyung-Su Byun , “An Ultra-Low Power Spike Detector for Implantable Biomedical Systems”
[12] S. Barati and A.M. Sodagar ,“Discrete-time automatic spike detection circuit for neural recording implants”
[13] Reid R. Harrison , “The Design of Integrated Circuits to Observe Brain Activity”
[14] Jeremy Holleman, Apurva Mishra, Chris Diorio, and Brian Otis ,“A Micro-Power Neural Spike Detector and Feature Extractor in .13μm CMOS” IEEE 2008 Custom Intergrated Circuits Conference (CICC)
[15] Christy L. Rogers, John G. Harris, Jose C. Principe, and Justin C. Sanchez ,” An analog VLSI implementation of a multi-scale spike detection algorithm for extracellular neural recordings”
[16] Christy L. Rogers and John G. Harris,” A low-power analog spike detector for extracellular neural recordings”
[17] Amir M. Sodagar, Kensall D. Wise, Khalil Najafi, “A Fully-Integrated Mixed-Signal Neural Processing Module for Implantable Multi-Channel Cortical Recording”
[18] Reid R. Harrison, ” A Low-Power Integrated Circuit for Adaptive Detection of Action Potentials in Noisy Signals”
[19] Donghwi Kim, Milutin Stana´cevi´c and Ridha Kamoua , “A Low-Power Low-Data-Rate Neural Recording System with Adaptive Spike Detection”
[20] Iyad Obeid* and Patrick D. Wolf , “Evaluation of Spike-Detection Algorithms for a Brain-Machine Interface Application” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 6, JUNE 2004
[21] Paul T. Watkins, Gopal Santhanam, Krishna V. Shenoy, and Reid R. Harrison, “Validation of Adaptive Threshold Spike Detector for Neural Recording” the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA • September 1-5, 2004
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *