帳號:guest(3.144.124.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝米嘉
作者(外文):Hsieh, Mi Chia
論文名稱(中文):基於急性期心律變異分析之ST時段上升心肌梗塞預後研究
論文名稱(外文):Prognosis Research of ST Elevation Myocardial Infarction Based on Heart Rate Variability Analysis in the Acute Stage
指導教授(中文):馬席彬
指導教授(外文):Ma, Hsi Pin
口試委員(中文):黃元豪
蔡佩芸
楊家驤
林澂
口試委員(外文):Huang, Yuan Hao
Tsai, Pei Yun
Yang, Chia Hsiang
Lin, Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061557
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:73
中文關鍵詞:ST時段上升心肌梗塞心律變異分析
外文關鍵詞:ST Elevation Myocardial InfarctionHeart Rate Variability Analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:382
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
急性心肌梗塞(AMI)發作於營養及氧氣無法供給至心肌細胞,導致心肌細胞缺氧受損或壞死。壞死的區域可能會妨礙心肌正常的收縮,加重心臟健康部位的負荷,造成更多心肌死亡,使受損的心臟越來越衰弱,最後可能演變成心臟衰竭等更嚴重的病症。因此我們希望能從急性期找到ㄧ些能預測患者慢性期的心臟狀態的參數,做為心臟惡化的預測指標。
在此論文中,患者依阻塞的血管可分為右冠狀動脈(RCA)組與左前降支(LAD)組。每個患者在經過心導管手術(PCI)之後會記錄4次24小時心電圖信號(ECG),分別在急性心肌梗塞後三天內(急性期)、三個月、六個月、十二個月(慢性期)。我們擷取該四個時期的非睡眠連續四小時片段進行心律變異性分析(HRV),再用曼惠特尼U檢定評估急性心肌梗塞病人與對照組之間的心律變異性分析參數差異。結果顯示患者與對照組之間存在差異。在慢性期,頻域參數與多尺度熵(MSE)曲線展現急性心肌梗塞病人與對照組之間的差異。在急性期,急性心肌梗塞病人去趨勢波動分析(DFA) 的長尺度參數(α2)顯著低於對照組。此結果也證明了非線性的心律變異性分析方法如多尺度熵和去趨勢波動分析,提供傳統心律變異性分析時域與頻域參數無法展現的資訊。而右冠狀動脈組與左前降支組跟對照組之間有顯著差異的心律變異指標略有不同,印證了阻塞血管的不同會對心臟造成不一樣的影響。因此,右冠狀動脈組與左前降支組不應混在一起分析。
另外我們希望能夠從急性期的心電圖信號找出可用的參數去預測患者將來復發急性心肌梗塞、心臟衰竭或死亡的機率。但由於追蹤期內未有患者復發急性心肌梗塞、心臟衰竭或死亡。我們根據患者急性心肌梗塞ㄧ年後的左心室射出分率(LVEF)數值,將患者分成兩組。左心室射出分率數值較低者視為心臟狀態ㄧ般好,左心室射出分率數值較高者視為心臟狀態較好。兩組患者在急性期即有顯著差異的心律變異性分析參數有:正常心律間其標準差(sdNN)、低頻(LF)、多尺度熵曲線的短尺度斜率(slope1-5)、去趨勢波動分析的長尺度參數(α2)。從血液測量測得且與心臟受損面積相關的標幟物,肌酸激酶-MB(CKMB),亦存在顯著差異。我們利用接收者操作特徵(ROC)曲線分析觀察各參數與肌酸激酶-MB的鑑別能力,擁有最高鑑別能力的是低頻(曲線下面積AUC=0.8051),其次是多尺度熵曲線的短尺度斜率(曲線下面積=0.7721),第三者為肌酸激酶-MB (曲線下面積=0.739)。我們用肌酸激酶-MB、低頻、多尺度熵曲線的短尺度斜率建構一個邏輯回歸模型,其曲線下面積為0.8235。表示將肌酸激酶-MB與心律變異性分析參數結合確實能提升預測患者一年後狀態的預測能力。
Acute myocardial infarction (AMI) onset when an interruption in the supply of myocardial oxygen and nutrients occurs and causes damage to the myocardium. The infarct area may hinder the normal contraction of the myocardium, increasing the loading of healthy parts of the heart, and even cause death of more cardiac cell. Finally, it may evolve into heart failure or other more severe conditions. Therefore, we want to find some parameters that can be used as a predictor of cardiac deterioration.
In the thesis, according to the blocking blood vessel, AMI patients are divided into right coronary artery (RCA) group and left anterior descending (LAD) group. Every patient recorded 24 hours ECG during the acute stage (within 72 hours after AMI), 3 months post-MI (90 ± 14 days after AMI), 6 months (180 ± 28 days after AMI), and chronic phase (1 year). At each stage, we only extracted four hours data with waking period in heart rate variability (HRV) analysis, and then used Mann-Whitney U test to assess the difference in HRV parameters between AMI patients and the controls. The HRV results shown that there is a difference between AMI patients and the control subjects. At the chronic phase, the parameters of frequency domain and multiscale entropy (MSE) curve display the difference between AMI patients and the controls. At the acute stage, the long-term fractal scaling exponent (α2) in detrended fluctuation analysis (DFA) of AMI patients is significantly lower than that of the controls. The results also proved that the nonlinear methods of HRV such as MSE and DFA can provide some information that traditional parameters not showed. Since the HRV parameters, which had a significant difference between RCA group and the controls, are slightly different to LAD group, it confirms that the effect on the heart caused by the blocking of dissimilar blood vessels is not the same. Therefore, RCA group and LAD group should not be mixed into one group.
Moreover, we want to find out some available parameters from acute stage ECG signal to predict the probability of AMI recurrence, heart failure or death. However, none of the patients died or developed heart failure during 1 year of follow-up. Therefore, we divided patients into two groups according to the left ventricular ejection fraction (LVEF) after AMI attack one year. The group with lower LVEF was regarded as a group of AMI patients who have a good status of the heart, and the other group was regarded as a group of AMI patients who have a better status of the heart. The HRV parameters, the standard deviation of all normal to normal intervals (sdNN), low frequency (LF), the slope of MSE curve in short scale (slope1-5) and DFA α2 were significantly different at the acute stage between two groups. Creatinine kinase -MB (CKMB), which is obtained from blood tests and related with the damaged area of the heart, also had a significant difference between two groups. In order to compare the discrimination ability of those parameters and CKMB, we used receiver operating characteristic (ROC) curve analysis. LF has the best discriminatory power (AUC=0.8051), the second one is slope1-5 (AUC=0.7721), and the third one is CKMB (AUC=0.739). Then we used LF, slope1-5 and CKMB to establish a logistic regression model, and the AUC of this model is 0.8235. It indicated that combining CKMB and HRV parameters can really enhance the discrimination rate.
Abstract i
1 Introduction 1
1.1 Research Background . . . . . . . . . . . . . . . . 1
1.2 Research Motivations . . . . . . . . . . . . . . . .2
1.3 Organization . . . . . . . . . . . . . . . . . . . .3
2 Medical Background and Literature Review 5
2.1 Coronary Arteries . . . . . . . . . . . . . . . . . 5
2.2 Acute Myocardial Infarction . . . . . . . . . . . . 7
2.2.1 Electrocardiogram (ECG) . . . . . . . . . . . . . 8
2.2.2 Blood Test . . . . . . . . . . . . . . . . . . . 14
2.2.3 Cardiac Echo . . . . . . . . . . . . . . . . . . 15
2.3 Left Ventricular Remodeling . . . . . . . . . . . .17
2.4 AMI Study Literature Review . . . . . . . . . . . .18
3 Proposed Methods 23
3.1 Biomedical Information . . . . . . . . . . . . . . 25
3.1.1 Patient Characteristics . . . . . . . . . . . . .25
3.1.2 Data Information . . . . . . . . . . . . . . . . 25
3.2 Data Preprocessing . . . . . . . . . . . . . . . . 26
3.3 Analysis Algorithms . . . . . . . . . . . . . . . .29
3.3.1 Heart Rate Variability (HRV) Analysis . . . . . .29
3.3.2 Nonlinear Method . . . . . . . . . . . . . . . . 31
3.4 Hypothesis Test . . . . . . . . . . . . . . . . . .33
3.4.1 Mann-Whitney U Test . . . . . . . . . . . . . . .34
4 Analysis and Discussion 37
4.1 4 Stage of RCA Patients Compared with Control . . .37
4.1.1 Patient List . . . . . . . . . . . . . . . . . . 38
4.1.2 Linear HRV Analysis Results . . . . . . . . . . .39
4.1.3 Nonlinear HRV Analysis Results . . . . . . . . . 40
4.1.4 Summary . . . . . . . . . . . . . . . . . . . . .42
4.2 4 Stage of LAD Patients Compared with Control . . .43
4.2.1 Patient List . . . . . . . . . . . . . . . . . . 43
4.2.2 Linear HRV Analysis Results . . . . . . . . . . .44
4.2.3 Nonlinear HRV Analysis Results . . . . . . . . . 45
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . .47
4.3 Acute Stage of RCA . . . . . . . . . . . . . . . . 48
4.3.1 Patient List . . . . . . . . . . . . . . . . . . 48
4.3.2 Linear HRV Analysis Results . . . . . . . . . . .49
4.3.3 Nonlinear HRV Analysis Results . . . . . . . . . 50
4.3.4 Receiver Operating Characteristic (ROC) Analysis 52
4.4 Summary and Discussion . . . . . . . . . . . . . . 53
5 Conclusions and Future Prospects 55
5.1 Conclusions . . . . . . . . . . . . . . . . . . . .55
5.2 Future Prospects . . . . . . . . . . . . . . . . . 56
Appendices 67
A HRV Analysis Results of LAD Patients in Acute Stage 69
B HRV Analysis Results of Four Stages of AMI Patients Compare Each Other 71
[1] “WHO j The top 10 causes of death.” [Online]. Available: http://www.who.int/ mediacentre/factsheets/fs310/en/
[2] N. D. Wong, “Epidemiological studies of CHD and the evolution of preventive cardiology,” Nature Reviews Cardiology, vol. 11, no. 5, pp. 276–289, May 2014.
[Online]. Available: http://www.nature.com/nrcardio/journal/v11/n5/abs/nrcardio.2014.26.html
[3] H. M. Krumholz, Y. Wang, J. Chen, E. E. Drye, J. A. Spertus, J. S. Ross, J. P. Curtis,
B. K. Nallamothu, J. H. Lichtman, E. P. Havranek, F. A. Masoudi, M. J. Radford, L. F.
Han, M. T. Rapp, B. M. Straube, and S.-L. T. Normand, “Reduction in acute myocardial
infarction mortality in the United States: risk-standardized mortality rates from 1995-
2006,” JAMA, vol. 302, no. 7, pp. 767–773, Aug. 2009.
[4] K. Smolina, F. L. Wright, M. Rayner, and M. J. Goldacre, “Determinants of the
decline in mortality from acute myocardial infarction in England between 2002 and
2010: linked national database study,” BMJ, vol. 344, p. d8059, Jan. 2012. [Online].
Available: http://www.bmj.com/content/344/bmj.d8059
[5] J. E. Hall and A. C. Guyton, Guyton and Hall Textbook of Medical Physiology. Elsevier
Health Sciences, May 2015, google-Books-ID: 3sWNCgAAQBAJ.
[6] R. E. Kleiger, J. P. Miller, J. T. Bigger, and A. J. Moss, “Decreased heart rate variability
and its association with increased mortality after acute myocardial infarction,” The
American Journal of Cardiology, vol. 59, no. 4, pp. 256–262, Feb. 1987.
[7] L. Fei, X. Copie, M. Malik, and A. J. Camm, “Short- and long-term assessment of heart
rate variability for risk stratification after acute myocardial infarction,” The American
Journal of Cardiology, vol. 77, no. 9, pp. 681–684, Apr. 1996.
[8] M. T. La Rovere, J. T. Bigger, F. I. Marcus, A. Mortara, and P. J. Schwartz, “Baroreflex
sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial
infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction)
Investigators,” Lancet (London, England), vol. 351, no. 9101, pp. 478–484, Feb. 1998.
[9] H. V. Huikuri, T. H. Mkikallio, C. K. Peng, A. L. Goldberger, U. Hintze, and M. Mller,
“Fractal correlation properties of R-R interval dynamics and mortality in patients with
depressed left ventricular function after an acute myocardial infarction,” Circulation,
vol. 101, no. 1, pp. 47–53, Jan. 2000.
[10] J. T. Bigger, J. L. Fleiss, R. C. Steinman, L. M. Rolnitzky, R. E. Kleiger, and J. N.
Rottman, “Frequency domain measures of heart period variability and mortality after
myocardial infarction,” Circulation, vol. 85, no. 1, pp. 164–171, Jan. 1992.
[11] J. S. Perkimki, V. Jokinen, J. Tapanainen, K. E. J. Airaksinen, and H. V. Huikuri, “Autonomic
markers as predictors of nonfatal acute coronary events after myocardial infarction,”
Annals of Noninvasive Electrocardiology: The Official Journal of the International
Society for Holter and Noninvasive Electrocardiology, Inc, vol. 13, no. 2, pp. 120–129,
Apr. 2008.
[12] Coronary arteries. [Online]. Available: http://watchlearnlive.heart.org/CVML Player.
php?moduleSelect=corart
[13] Atherosclerosis. [Online]. Available: https://www.nhlbi.nih.gov/health/health-topics/
topics/atherosclerosis
[14] Limb leads of ekg. [Online]. Available: https://commons.wikimedia.org/wiki/File:
Limb leads of EKG.png
[15] “Chest Leads - ECG Lead Placement - Normal Function of the Heart - Cardiology
Teaching Package - Practice Learning - Division of Nursing - The University of Nottingham.” [Online]. Available: http://www.nottingham.ac.uk/nursing/practice/
resources/cardiology/function/chest leads.php
[16] “The Cardiovascular System: The Heart.” [Online]. Available: http://classes.
midlandstech.edu/carterp/Courses/bio211/chap18/chap18.html
[17] T.Wallimann, M.Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger, “Intracellular
compartmentation, structure and function of creatine kinase isoenzymes in tissues with
high and fluctuating energy demands: the ’phosphocreatine circuit’ for cellular energy
homeostasis.” Biochemical Journal, vol. 281, no. Pt 1, pp. 21–40, Jan. 1992. [Online].
Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1130636/
[18] T.Wallimann andW. Hemmer, “Creatine kinase in non-muscle tissues and cells,” Molecular
and Cellular Biochemistry, vol. 133-134, pp. 193–220, May 1994.
[19] A. Karmen, F. Wrblewski, and J. S. LaDue, “TRANSAMINASE ACTIVITY IN
HUMAN BLOOD,” Journal of Clinical Investigation, vol. 34, no. 1, pp. 126–133, Jan.
1955. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC438594/
[20] “CK - Clinical: Creatine Kinase (CK), Serum.” [Online]. Available: http:
//www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/8336
[21] U. F. O. Themes, “Acute Myocardial Infarction j Thoracic Key.” [Online]. Available:
http://thoracickey.com/acute-myocardial-infarction-3/
[22] Access to Surgery: 500 single best answer questions in general and systematic pathology.
PasTest Ltd, 2007, google-Books-ID: p2VzWJBpHDAC.
[23] C. D. Cabaniss, “Creatine Kinase,” in Clinical Methods: The History, Physical, and
Laboratory Examinations, 3rd ed., H. K. Walker, W. D. Hall, and J. W. Hurst, Eds.
Boston: Butterworths, 1990. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/
NBK352/
[24] W. F. Armstrong and T. Ryan, Feigenbaum’s Echocardiography. Lippincott Williams
& Wilkins, Feb. 2012, google-Books-ID: x8EDupFXjloC.
[25] R. S. Bhatia, J. V. Tu, D. S. Lee, P. C. Austin, J. Fang, A. Haouzi, Y. Gong, and P. P.
Liu, “Outcome of Heart Failure with Preserved Ejection Fraction in a Population-Based
Study,” New England Journal of Medicine, vol. 355, no. 3, pp. 260–269, Jul. 2006.
[Online]. Available: http://dx.doi.org/10.1056/NEJMoa051530
[26] M. A. Pfeffer and E. Braunwald, “Ventricular remodeling after myocardial infarction.
Experimental observations and clinical implications.” Circulation, vol. 81, no. 4, pp.
1161–1172, Apr. 1990. [Online]. Available: http://circ.ahajournals.org/content/81/4/
1161
[27] J. L. Rouleau, J. de Champlain, M. Klein, D. Bichet, L. Moy, M. Packer, G. R. Dagenais,
B. Sussex, J. M. Arnold, and F. Sestier, “Activation of neurohumoral systems in postinfarction
left ventricular dysfunction,” Journal of the American College of Cardiology,
vol. 22, no. 2, pp. 390–398, Aug. 1993.
[28] M. G. S. J. Sutton and N. Sharpe, “Left Ventricular Remodeling After Myocardial
Infarction,” Circulation, vol. 101, no. 25, pp. 2981–2988, Jun. 2000. [Online].
Available: http://circ.ahajournals.org/content/101/25/2981
[29] J. A. Erlebacher, J. L. Weiss, M. L. Weisfeldt, and B. H. Bulkley, “Early dilation of the
infarcted segment in acute transmural myocardial infarction: role of infarct expansion
in acute left ventricular enlargement,” Journal of the American College of Cardiology,
vol. 4, no. 2, pp. 201–208, Aug. 1984.
[30] S. R. Tiyyagura and S. P. Pinney, “Left ventricular remodeling after myocardial infarction:
past, present, and future,” The Mount Sinai Journal of Medicine, New York, vol. 73,
no. 6, pp. 840–851, Oct. 2006.
[31] C. M. Ashton, D. H. Kuykendall, M. L. Johnson, N. P. Wray, and L. Wu, “The association
between the quality of inpatient care and early readmission,” Annals of Internal
Medicine, vol. 122, no. 6, pp. 415–421, Mar. 1995.
32] C. M. Ashton, D. J. Del Junco, J. Souchek, N. P. Wray, and C. L. Mansyur, “The association
between the quality of inpatient care and early readmission: a meta-analysis of the
evidence,” Medical Care, vol. 35, no. 10, pp. 1044–1059, Oct. 1997.
[33] K. Dharmarajan, A. F. Hsieh, Z. Lin, H. Bueno, J. S. Ross, L. I. Horwitz, J. A. Barreto-
Filho, N. Kim, S. M. Bernheim, L. G. Suter, E. E. Drye, and H. M. Krumholz, “Diagnoses
and timing of 30-day readmissions after hospitalization for heart failure, acute
myocardial infarction, or pneumonia,” JAMA, vol. 309, no. 4, pp. 355–363, Jan. 2013.
[34] K. Smolina, F. L. Wright, M. Rayner, and M. J. Goldacre, “Long-Term Survival and
Recurrence After Acute Myocardial Infarction in England, 2004 to 2010,” Circulation:
Cardiovascular Quality and Outcomes, vol. 5, no. 4, pp. 532–540, Jan. 2012. [Online].
Available: http://circoutcomes.ahajournals.org/content/5/4/532
[35] T. H. Mkikallio, J. M. Tapanainen, M. P. Tulppo, and H. V. Huikuri, “Clinical applicability
of heart rate variability analysis by methods based on nonlinear dynamics,” Cardiac
Electrophysiology Review, vol. 6, no. 3, pp. 250–255, Sep. 2002.
[36] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of biological
signals,” Physical Review E, vol. 71, no. 2, p. 021906, Feb. 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.71.021906
[37] E. Vanoli, P. B. Adamson, n. Ba-Lin, G. D. Pinna, R. Lazzara, andW. C. Orr, “Heart rate
variability during specific sleep stages. A comparison of healthy subjects with patients
after myocardial infarction,” Circulation, vol. 91, no. 7, pp. 1918–1922, Apr. 1995.
[38] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger, and R. J. Cohen,
“Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat
cardiovascular control,” Science (New York, N.Y.), vol. 213, no. 4504, pp. 220–222, Jul.
1981.
[39] B. Pomeranz, R. J. Macaulay, M. A. Caudill, I. Kutz, D. Adam, D. Gordon, K. M.
Kilborn, A. C. Barger, D. C. Shannon, and R. J. Cohen, “Assessment of autonomic function in humans by heart rate spectral analysis,” The American Journal of Physiology,
vol. 248, no. 1 Pt 2, pp. H151–153, Jan. 1985.
[40] A. Malliani, M. Pagani, F. Lombardi, and S. Cerutti, “Cardiovascular neural regulation
explored in the frequency domain,” Circulation, vol. 84, no. 2, pp. 482–492, Aug. 1991.
[41] G. Valenza, M. Nardelli, G. Bertschy, A. Lanata, and E. P. Scilingo, “Mood
states modulate complexity in heartbeat dynamics: A multiscale entropy analysis,”
EPL (Europhysics Letters), vol. 107, p. 18003, Jul. 2014. [Online]. Available:
http://adsabs.harvard.edu/abs/2014EL....10718003V
[42] Valenza, L. Citi, A. Lanata, E. P. Scilingo, R. Barbieri, R. Barbieri, R. Barbieri, R. Barbieri,
R. Barbieri, and R. Barbieri, “Revealing Real-Time Emotional Responses: a Personalized
Assessment based on Heartbeat Dynamics,” Nature Scientific Reports, vol. 4,
no. 4998, pp. 1–13, 2014.
[43] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate
entropy and sample entropy,” American Journal of Physiology. Heart and Circulatory
Physiology, vol. 278, no. 6, pp. H2039–2049, Jun. 2000.
[44] H.-K. Yuan, C. Lin, P.-H. Tsai, F.-C. Chang, K.-P. Lin, H.-H. Hu, M.-C. Su, and M.-
T. Lo, “Acute increase of complexity in the neurocardiovascular dynamics following
carotid stenting,” Acta Neurologica Scandinavica, vol. 123, no. 3, pp. 187–192, Mar.
2011.
[45] M. Costa, A. A. Priplata, L. A. Lipsitz, Z. Wu, N. E. Huang, A. L. Goldberger, and
C.-K. Peng, “Noise and poise: Enhancement of postural complexity in the elderly with a
stochastic-resonance-based therapy,” Europhysics Letters, vol. 77, p. 68008, Mar. 2007.
[46] H. V. Huikuri and T. H. Mkikallio, “Heart rate variability in ischemic heart disease,”
Autonomic Neuroscience, vol. 90, no. 12, pp. 95–101, Jul. 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566070201002739
[47] C. K. Peng, S. Havlin, J. M. Hausdorff, J. E. Mietus, H. E. Stanley, and A. L. Goldberger,
“Fractal mechanisms and heart rate dynamics. Long-range correlations and their
breakdown with disease,” Journal of Electrocardiology, vol. 28 Suppl, pp. 59–65, 1995.
[48] R. Krishnam, S. Chatlapalli, H. Nazeran, E. Haltiwanger, and Y. Pamula, “Detrended
Fluctuation Analysis: A Suitable Long-term Measure of HRV Signals in Children with
Sleep Disordered Breathing,” in 2005 IEEE Engineering in Medicine and Biology 27th
Annual Conference, Jan. 2005, pp. 1174–1177.
[49] C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos
(Woodbury, N.Y.), vol. 5, no. 1, pp. 82–87, 1995.
[50] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, Mar. 1947. [Online]. Available:
http://projecteuclid.org/euclid.aoms/1177730491
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *