帳號:guest(52.14.93.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳偉祐
作者(外文):Chen, Wei Yu
論文名稱(中文):Multiobjective Robust Beamforming for Target SINR Tracking and QoS in Multicell MIMO Wireless Systems with Imperfect Channel State Information
論文名稱(外文):多目標強健波束成型設計之目標SINR追蹤與QoS於不完全通道資訊之多輸入多輸出無線系統
指導教授(中文):陳博現
指導教授(外文):Chen, Bor Sen
口試委員(中文):洪樂文
吳仁銘
翁詠祿
口試委員(外文):Hong, Yao Win
Wu, Jen Ming
Ueng, Yeong Luh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061522
出版年(民國):105
畢業學年度:105
語文別:英文中文
論文頁數:37
中文關鍵詞:線性矩陣不等式多細胞多輸入多輸出半正定規劃強健H-infinity設計服務質量能量消耗多目標最佳化問題
外文關鍵詞:Linear matrix inequality (LMI)Multicell multi-input multi-output (MIMO)Semidefinite programming (SDP)Robust H-infinity design schemeQuality of service (QoS)Power consumptionMultiobjective optimization problems (MOPs)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:415
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
在多細胞多輸入多輸出干擾無線網路中,雖然優良的使用者服務品質可以經由聯合處理技術與合作式波束成型來達成,對於如何處理系統的來回傳送延遲效應以及通道狀態資訊的不確定性仍然具有一定的困難度。在本篇論文中,考慮具不完全通道資訊之多細胞多輸入多輸出干擾無線系統,我們提出最佳化訊號對干擾加雜訊比值追蹤效能之多目標波束成型設計方法以達到所需的使用者服務品質與最小化總和能量消耗的要求。所提出的多目標波束成型設計方法具有以下三項優點。第一,所提出的波束成型設計可以同時達成以下三個目標,分別是最佳化強健 訊號對干擾加雜訊比值之追蹤效能,最小化總和能量消耗,以及最小化網路中最糟情況的干擾能量。第二,根據所提出的強健 訊號對干擾加雜訊比值追蹤方法,最糟多細胞干擾、來回傳送延遲、通道衰減以及雜訊可以被有效的減弱並且能提供比傳統方法更好的設計彈性。第三,根據訊號對干擾加雜訊比值之追蹤模型與總和權重半正定規劃之多目標演化演算法的互相合作,波束成型設計的帕雷托最佳解可以被得到以同時達成所需的使用者服務品質以及最小化總和能量消耗的目標。最後,我們提供數個模擬範例以顯示所提出的設計方法確實可達成所設計的要求以及證明理論分析的正確性。
Although high Quality of Service (QoS) requirement of the multicell multi-input multi-output (MIMO) interference wireless network can be achieved by joint processing (JP) and coordinated beamforming (CB), it is difficult to deal with the delay effect of the system and the uncertainty of the channel information. In this study, we propose a multiobjective beamforming scheme with optimal signal-to-interference-plus-noise ratio (SINR) tracking methods to achieve QoS with minimum power consumption for multicell MIMO interference wireless system with imperfect channel coefficients. The advantages of the proposed multiobjective beamforming scheme are threefold. First, the designed beamforming can achieve three objectives as follows: optimal H-infinity SINR tracking performance, minimum total power consumption, and minimum worst case interference in the multicell MIMO system simultaneously. Second, we show that the multicell interference, round trip delay, channel fading and noise can be efficiently weakened by the proposed robust H-infinity SINR tracking scheme to provide a better feasibility than the conventional methods. Third, through the cooperation between SINR tracking model and the weighting sum semidefinite programming (SDP) with multiobjective evolution algorithm (MOEA), the Pareto optimal beamforming weights can be obtained to achieve QoS requirements with minimum power consumption simultaneously. Finally, we provide several numerical examples to show that the proposed design scheme can achieve favorable results and guarantee the theoretical analysis.
摘要-------------------------------------------------(i)
Abstract--------------------------------------------(ii)
誌謝------------------------------------------------(iii)
Contents--------------------------------------------(iv)
I. Introduction-----------------------------------------1
II. System Model for Robust Beamforming Design----------7
III. Problem Formulation-------------------------------14
IV. Multiobjective Robust Beamforming Design for QoS---18
V. Simulation Results----------------------------------26
VI. Conclusion-----------------------------------------32
Reference----------------------------------------------33
Appendix-----------------------------------------------36
[1] M. Y. Hong, R. Y. Sun, H. Baligh, and Z. Q. Luo, "Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogeneous Networks," IEEE Journal on Selected Areas in Communications, vol. 31, pp. 226-240, Feb 2013.
[2] S. H. Tsai and H. V. Poor, "Power Allocation for Artificial-Noise Secure MIMO Precoding Systems," IEEE Transactions on Signal Processing, vol. 62, pp. 3479-3493, Jul 2014.
[3] D. H. N. Nguyen and L. N. Tho, "Sum-Rate Maximization in the Multicell MIMO Broadcast Channel With Interference Coordination," IEEE Transactions on Signal Processing, vol. 62, pp. 1501-1513, Mar 2014.
[4] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, "Multi-Cell MIMO Cooperative Networks: A New Look at Interference," IEEE Journal on Selected Areas in Communications, vol. 28, pp. 1380-1408, 2010.
[5] S. W. He, Y. M. Huang, S. Jin, and L. X. Yang, "Coordinated Beamforming for Energy Efficient Transmission in Multicell Multiuser Systems," IEEE Transactions on Communications, vol. 61, pp. 4961-4971, Dec 2013.
[6] H. Dahrouj and W. Yu, "Coordinated Beamforming for the Multicell Multi-Antenna Wireless System," IEEE Transactions on Wireless Communications, vol. 9, pp. 1748-1759, May 2010.
[7] G. J. Foschini, K. Karakayali, and R. A. Valenzuela, "Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency," IEE Proceedings-Communications, vol. 153, pp. 548-555, Aug 2006.
[8] W. Yu and T. Lan, "Transmitter optimization for the multi-antenna downlink with per-antenna power constraints," IEEE Transactions on Signal Processing, vol. 55, pp. 2646-2660, Jun 2007.
[9] R. Zhang, "Cooperative Multi-Cell Block Diagonalization with Per-Base-Station Power Constraints," IEEE Journal on Selected Areas in Communications, vol. 28, pp. 1435-1445, Dec 2010.
[10] H. Shen, W. Xu, S. Jin, and C. M. Zhao, "Joint Transmit and Receive Beamforming for Multiuser MIMO Downlinks With Channel Uncertainty," IEEE Transactions on Vehicular Technology, vol. 63, pp. 2319-2335, Jun 2014.
[11] H. A. Suraweera, P. J. Smith, and M. Shafi, "Capacity Limits and Performance Analysis of Cognitive Radio With Imperfect Channel Knowledge," IEEE Transactions on Vehicular Technology, vol. 59, pp. 1811-1822, May 2010.
[12] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, "Pilot Contamination and Precoding in Multi-Cell TDD Systems," IEEE Transactions on Wireless Communications, vol. 10, pp. 2640-2651, Aug 2011.
[13] M. F. Hanif, L. N. Tran, A. Tolli, and M. Juntti, "Computationally Efficient Robust Beamforming for SINR Balancing in Multicell Downlink With Applications to Large Antenna Array Systems," IEEE Transactions on Communications, vol. 62, pp. 1908-1920, Jun 2014.
[14] H. Q. Du and P. J. Chung, "A Probabilistic Approach for Robust Leakage-Based MU-MIMO Downlink Beamforming with Imperfect Channel State Information," IEEE Transactions on Wireless Communications, vol. 11, pp. 1239-1247, Mar 2012.
[15] J. Park, Y. Sung, D. Kim, and H. V. Poor, "Outage Probability and Outage-Based Robust Beamforming for MIMO Interference Channels with Imperfect Channel State Information," IEEE Transactions on Wireless Communications, vol. 11, pp. 3561-3573, Oct 2012.
[16] A. Pascual-Iserte, D. P. Palomar, A. I. Perez-Neira, and M. A. Lagunas, "A robust maximin approach for MIMO communications with imperfect channel state information based on convex optimization," IEEE Transactions on Signal Processing, vol. 54, pp. 346-360, Jan 2006.
[17] E. G. Larsson and H. V. Poor, "Joint Beamforming and Broadcasting in Massive MIMO," IEEE Transactions on Wireless Communications, vol. 15, pp. 3058-3070, Apr 2016.
[18] B. K. Chalise and L. Vandendorpe, "MIMO Relay Design for Multipoint-to-Multipoint Communications With Imperfect Channel State Information," IEEE Transactions on Signal Processing, vol. 57, pp. 2785-2796, Jul 2009.
[19] Z. G. Ding, F. Adachi, and H. V. Poor, "The Application of MIMO to Non-Orthogonal Multiple Access," IEEE Transactions on Wireless Communications, vol. 15, pp. 537-552, Jan 2016.
[20] W. Ikram, S. Petersen, P. Orten, and N. F. Thornhill, "Adaptive Multi-Channel Transmission Power Control for Industrial Wireless Instrumentation," IEEE Transactions on Industrial Informatics, vol. 10, pp. 978-990, May 2014.
[21] M. Rasti, M. Hasan, L. B. Le, and E. Hossain, "Distributed Uplink Power Control for Multi-Cell Cognitive Radio Networks," IEEE Transactions on Communications, vol. 63, pp. 628-642, Mar 2015.
[22] Y. Cheng and V. K. N. Lau, "Distributive Power Control Algorithm for Multicarrier Interference Network Over Time-Varying Fading Channels-Tracking Performance Analysis and Optimization," IEEE Transactions on Signal Processing, vol. 58, pp. 4750-4760, Sep 2010.
[23] D. Catrein and R. Mathar, "Feasibility and Power Control for Linear Multiuser Receivers in CDMA Networks," IEEE Transactions on Wireless Communications, vol. 7, pp. 4700-4709, Nov 2008.
[24] C. Y. Yang, B. S. Chen, and C. Y. Jian, "Robust Two-Loop Power Control for CDMA Systems via Multiobjective Optimization," IEEE Transactions on Vehicular Technology, vol. 61, pp. 2145-2157, Jun 2012.
[25] F. G. Wang, X. J. Yuan, S. C. Liew, and D. N. Guo, "Wireless MIMO Switching: Weighted Sum Mean Square Error and Sum Rate Optimization," IEEE Transactions on Information Theory, vol. 59, pp. 5297-5312, Sep 2013.
[26] D. W. K. Ng, E. S. Lo, and R. Schober, "Multiobjective Resource Allocation for Secure Communication in Cognitive Radio Networks With Wireless Information and Power Transfer," IEEE Transactions on Vehicular Technology, vol. 65, pp. 3166-3184, May 2016.
[27] Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, "Multi-Objective Optimization for Robust Power Efficient and Secure Full-Duplex Wireless Communication Systems," IEEE Transactions on Wireless Communications, vol. 15, pp. 5511-5526, 2016.
[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, Apr 2002.
[29] J. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched Pareto genetic algorithm for multiobjective optimization," in Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on, 1994, pp. 82-87 vol.1.
[30] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, "A simulated annealing-based multiobjective optimization algorithm: AMOSA," IEEE Transactions on Evolutionary Computation, vol. 12, pp. 269-283, Jun 2008.
[31] K. Deb and D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algorithms, 1st ed. New York: John Wiley & Sons, Inc., 2001.
[32] B. S. Chen, C. L. Tsai, and Y. F. Chen, "Mixed H-2/H-infinity filtering design in multirate transmultiplexer systems: LMI approach," IEEE Transactions on Signal Processing, vol. 49, pp. 2693-2701, Nov 2001.
[33] R. Zhang, C. C. Chai, and Y. C. Liang, "Joint Beamforming and Power Control for Multiantenna Relay Broadcast Channel With QoS Constraints," Ieee Transactions on Signal Processing, vol. 57, pp. 726-737, Feb 2009.
[34] S. S. Christensen, R. Agarwal, E. de Carvalho, and J. M. Cioffi, "Weighted Sum-Rate Maximization using Weighted MMSE for MIMO-BC Beamforming Design," Ieee Transactions on Wireless Communications, vol. 7, pp. 4792-4799, Dec 2008.
[35] Y. W. Huang and D. P. Palomar, "Rank-Constrained Separable Semidefinite Programming With Applications to Optimal Beamforming," IEEE Transactions on Signal Processing, vol. 58, pp. 664-678, Feb 2010.
[36] Z. Q. Luo, W. K. Ma, A. M. C. So, Y. Y. Ye, and S. Z. Zhang, "Semidefinite Relaxation of Quadratic Optimization Problems," IEEE Signal Processing Magazine, vol. 27, pp. 20-34, May 2010.
[37] C. J. William and C. C. Donald, Microwave Mobile Communications: Wiley-IEEE Press, 1994.
[38] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Communications with MATLAB: Wiley Publishing, 2010.
[39] S. P. Boyd, Linear matrix inequalities in system and control theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *