帳號:guest(3.145.66.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇明合
作者(外文):Su, Ming-He
論文名稱(中文):藉由系統生物學方法建立基因與表觀遺傳網路來探究Caco-2細胞與困難梭狀桿菌於感染過程的訊號耦合機制
論文名稱(外文):Investigating the Progression of Cross-talk Mechanism in Caco-2 cells during Clostridium difficile Infection by Constructing Genetic and Epigenetic Interspecies Networks: A Systems Biology Approach
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):蔡錦華
藍忠昱
王慧菁
鄭世進
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061520
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:72
中文關鍵詞:困難梭狀桿菌Caco-2細胞困難梭狀桿菌感染基因與表觀遺傳網路分子訊號耦合機制活性氧物質內質網壓力多分子藥物
外文關鍵詞:Clostridium difficileCaco-2 cellsClostridium difficile infectiongenetic and epigenetic interspecies networkcross-talk molecular mechanismreactive oxygen speciesendoplasmic reticulum stressmultiple molecules drug
相關次數:
  • 推薦推薦:0
  • 點閱點閱:468
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
困難梭狀桿菌是醫院內抗生素相關腹瀉的首要原因,也被稱為困難梭菌相關疾病,此外也是偽膜性結腸炎的主要病原體。在嚴重的案例中,困難梭菌感染(CDI)會造成毒性巨結腸症、腸穿孔甚至死亡。腸道上皮細胞是困難梭菌黏附與定殖過程中最先接觸到的組織,並且是對抗細菌感染的第一道物理防線。而除了被廣泛研究的細胞毒性機制以外,宿主細胞與困難梭菌之間的全基因組交互作用機制卻鮮少被探討。在過去20年,CDI的發病率與嚴重程度都有顯著的上升,而在低風險族群中的病例上升也促使我們尋找其他的致病機制與毒性因子。因此,我們的目標是觀察人類結腸上皮Caco-2細胞與困難梭菌細胞於感染早期(0~60 min)與感染後期(30~120 min)所進行的分子訊號耦合機制。
在這篇文章中,我們使用一種系統生物學方法來探究感染過程中的訊號耦合機制,此種系統生物學方法包括了大數據資料探勘、動態網路模型、全基因組資料鑒定方法、系統維度檢測以及主要網路投影(PNP)。我們依此建立全基因組基因與表觀遺傳網路(GEINs)並從其中抽取出宿主-病原體核心網路(HPCNs)來研究早期與晚期CDI之間分子訊號耦合機制的演進。基於我們的結果,我們建議細胞壁蛋白CD2787和CD0237可以做為潛在的藥物標靶,因為這兩者在細胞黏附以及細菌防衛機制中都扮演了重要的角色。此外,困難梭菌進行芽孢化的重要蛋白例如CD1214、CD2629和CD2643也可以作為藥物標靶,因為芽胞所導致的二次感染是CDI中的一個重要議題。最後,我們提出一種多分子藥物,包含了E64、CD0237-specific IgY以及REP3123來治療CDI,這些藥物能抑制上述的病原體基因來達到治療的目的。
Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea, known as C. difficile-associated disease and the major etiologic agent of pseudomembranous colitis. In severe cases, C. difficile infection (CDI) can induce toxic megacolon, intestinal perforation and even death. The intestinal epithelial cells are the first tissue to be encountered for the adhesion and colonization of C. difficile, and play as the first physical defense barrier against infection. Despite the well characterized cytotoxicity, few studies investigate the genome-wide interplay between host cells and C. difficile. It has been shown a significant increase of the morbidity and severity of CDI in the past two decades, and the increasing cases in low risk groups also urge us to find other crucial pathogenic mechanisms and virulence factors. Thus, we aim to investigate cross-talk genetic and epigenetic molecular mechanisms between human colorectal epithelial Caco-2 cells and C. difficile during the early-stage (0~60 min) and the late-stage (30~120 min) of infection.
In this study, we introduced a systems biology approach to investigate the cross-talk mechanisms during the progression of infection via big data mining, dynamic network modeling, genome-wide data identification method, system order detection scheme and principal network projection method (PNP). We thus focus on how to construct genome-wide genetic-and-epigenetic interspecies networks (GEINs) and then extract host-pathogen core networks (HPCNs) to investigate the progression of underlying host/pathogen cross-talk genetic and epigenetic mechanisms from the early-stage to the late-stage of CDI. Based on our results, we suggest that the cell wall proteins CD2787 and CD0237, which both play an important role in cell adhesion and pathogen defense mechanisms, can be considered as potential drug targets. In addition, the crucial proteins employed by C. difficile for sporulation, including CD1214, CD2629 and CD2643, can also be considered as potential drug targets since the spore-mediated re-infection is an urgent issue to be solved. Finally, we proposed a potential multi-molecule drug containing E64, CD0237-specific IgY and REP3123 for the treatment of CDI due to their inhibitory abilities toward above targets.
誌謝 I
摘要 II
Abstract III
Contents IV
List of Tables VI
List of Figures VI
List of Supplemental materials VI
Introduction 1
Materials and Methods 4
2.1 Overview of the construction of GEINs and HPCNs in Caco-2 cells during the early-stage and late-stage of CDI 4
2.2 Big data mining and data preprocessing of host/pathogen gene/miRNA microarray data 4
2.3 Construction of candidate GEIN 5
2.4 Dynamic models of GEINs for Caco-2 cells and C. difficile during the infection 6
2.5 Parameter estimation of the dynamic models of candidate GEIN via system identification method 10
2.6 Pruning false-positives in candidate GEIN for real GEIN via system order detection scheme 17
Results 23
3.1 The identified GEINs at the early stage and late stage of Clostridium difficile infection 23
3.2 The host-pathogen core networks (HPCNs) during the infection of C. difficile 23
3.2.1 Construction of HPCNs to investigate the epigenetic activities in host core networks of CDI 23
3.2.2 Comparison of the pathogen core network with previously predicted core genes in C. difficile 25
3.2.3 Cross-talk mechanisms among host-pathogen interactions and their validations 26
3.3 A precise view of pathogenic effects and host responses at the early stage of C. difficile invasion 29
3.3.1 Pathogenic factors utilized by C. difficile and the resulting pathogenesis in Caco-2 cells…………………………………………………………………………………………………………………………….29
3.3.2 Caco-2 cells adopt autophagy, DNA damage response and the activation of PAK1 and GRB2 as remedial schemes in response to pathogen-induced damage 31
3.3.3 The offensive mechanisms of Caco-2 cells and the defense mechanisms of C. difficile at the early stage of CDI 32
3.4 The strong cellular-activities of Caco-2 cells and the infection results of host and pathogen at the late stage of infection 34
3.4.1 The emphasized ROS-production and stress-accumulation of host cells, and the failure of antioxidative defense mechanisms in C. difficile 34
3.4.2 The apoptosis process triggered by severe inflammation and accumulated cellular stresses of Caco-2 cells and the leaving of C. difficile via endospore-formation 37
3.5 Drug targets prediction and multi-molecule drug design for treating CDI 39
Discussion 41
Conclusion 44
1. Bartlett, J.G., et al., Antibiotic-Associated Pseudomembranous Colitis Due to Toxin-Producing Clostridia. New England Journal of Medicine, 1978. 298(10): p. 531-534.
2. Hall, I.C. and E. O'Toole, Intestinal flora in new-borin infants - With a description of a new pathogenic anaerobe, Bacillus difficilis. American Journal of Diseases of Children, 1935. 49(2): p. 390-402.
3. Kelly, C.P. and J.T. LaMont, Clostridium difficile - More difficult than ever. New England Journal of Medicine, 2008. 359(18).
4. Reveles, K.R., et al., The rise in Clostridium difficile infection incidence among hospitalized adults in the United States: 2001-2010. American Journal of Infection Control, 2014. 42(10): p. 1028-1032.
5. McGlone, S.M., et al., The economic burden of Clostridium difficile. Clinical Microbiology and Infection, 2012. 18(3): p. 282-289.
6. Warny, M., et al., Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet, 2005. 366(9491): p. 1079-1084.
7. Hidalgo, I.J., T.J. Raub, and R.T. Borchardt, Characterization of the Human-Colon Carcinoma Cell-Line (Caco-2) as a Model System for Intestinal Epithelial Permeability. Gastroenterology, 1989. 96(3): p. 736-749.
8. Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: Mechanism of action and role in disease. Clinical Microbiology Reviews, 2005. 18(2): p. 247-+.
9. Pituch, H., Clostridium difficile is no longer just a nosocomial infection or an infection of adults. International Journal of Antimicrobial Agents, 2009. 33: p. S42-S45.
10. Just, I., et al., Glucosylation of Rho-Proteins by Clostridium-Difficile Toxin-B. Nature, 1995. 375(6531): p. 500-503.
11. Chaves-Olarte, E., et al., R-Ras glucosylation and transient RhoA activation determine the cytopathic effect produced by toxin B variants from toxin A-negative strains of Clostridium difficile. Journal of Biological Chemistry, 2003. 278(10): p. 7956-7963.
12. Janvilisri, T., J. Scaria, and Y.F. Chang, Transcriptional Profiling of Clostridium difficile and Caco-2 Cells during Infection. Journal of Infectious Diseases, 2010. 202(2): p. 282-290.
13. Liu, S.R., et al., The Host Shapes the Gut Microbiota via Fecal MicroRNA. Cell Host & Microbe, 2016. 19(1): p. 32-43.
14. Geisler, S. and J. Coller, RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nature Reviews Molecular Cell Biology, 2013. 14(11): p. 699-712.
15. Wang, Y.C., et al., Prediction of Phenotype-Associated Genes via a Cellular Network Approach: A Candida albicans Infection Case Study. Plos One, 2012. 7(4).
16. Wang, Y.C., et al., Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study. Bmc Systems Biology, 2013. 7.
17. Hsu, C.Y., et al., Systematic approach to Escherichia coli cell population control using a genetic lysis circuit. Bmc Systems Biology, 2014. 8.
18. Li, C.W., Y.L. Lee, and B.S. Chen, Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection. Frontiers in Cellular and Infection Microbiology, 2016. 6.
19. Wang, X., et al., Cloning and Variation of Ground State Intestinal Stem Cells. Gastroenterology, 2015. 148(4): p. S729-S729.
20. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Research, 2004. 32: p. D449-D451.
21. Bader, G.D., D. Betel, and C.W.V. Hogue, BIND: the Biomolecular Interaction Network Database. Nucleic Acids Research, 2003. 31(1): p. 248-250.
22. Orchard, S., et al., The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 2014. 42(D1): p. D358-D363.
23. Licata, L., et al., MINT, the molecular interaction database: 2012 update. Nucleic Acids Research, 2012. 40(D1): p. D857-D861.
24. Chatr-aryamontri, A., et al., The BioGRID interaction database: 2015 update. Nucleic Acids Research, 2015. 43(D1): p. D470-D478.
25. Bovolenta, L.A., M.L. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. Bmc Genomics, 2012. 13.
26. Zheng, G.Y., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-2417.
27. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. Elife, 2015. 4.
28. Li, J.H., et al., starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 2014. 42(D1): p. D92-D97.
29. Friard, O., et al., CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. Bmc Bioinformatics, 2010. 11.
30. Szklarczyk, D., et al., STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 2015. 43(D1): p. D447-D452.
31. LaFrance, M.E., et al., Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(22): p. 7073-7078.
32. Yuan, P.F., et al., Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Research, 2015. 25(2): p. 157-168.
33. Papatheodorou, P., et al., Clostridial Glucosylating Toxins Enter Cells via Clathrin-Mediated Endocytosis. Plos One, 2010. 5(5).
34. Na, X., et al., gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infection and Immunity, 2008. 76(7): p. 2862-2871.
35. Haug, G., K. Aktories, and H. Barth, The host cell chaperone Hsp90 is necessary for cytotoxic action of the binary iota-like toxins. Infection and Immunity, 2004. 72(5): p. 3066-3068.
36. Goy, S.D., et al., Human neutrophils are activated by a peptide fragment of Clostridium difficile toxin B presumably via formyl peptide receptor. Cellular Microbiology, 2015. 17(6): p. 893-909.
37. ChavesOlarte, E., et al., Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. Journal of Clinical Investigation, 1997. 100(7): p. 1734-1741.
38. Berwin, B., et al., Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. Embo Journal, 2003. 22(22): p. 6127-6136.
39. Liu, T.S., et al., Protective role of HSP72 against Clostridium difficile toxin A-induced intestinal epithelial cell dysfunction. American Journal of Physiology-Cell Physiology, 2003. 284(4): p. C1073-C1082.
40. Tucker, K.D. and T.D. Wilkins, Toxin-a of Clostridium-Difficile Binds to the Human Carbohydrate Antigens-I, Antigens-X, and Antigens-Y. Infection and Immunity, 1991. 59(1): p. 73-78.
41. Kim, H., et al., Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Experimental Cell Research, 2009. 315(19): p. 3336-3344.
42. Calabi, E., et al., Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infection and Immunity, 2002. 70(10): p. 5770-5778.
43. Janoir, C., et al., Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. Journal of Bacteriology, 2007. 189(20): p. 7174-7180.
44. Larocque, M., T. Chenard, and R. Najmanovich, A curated C-difficile strain 630 metabolic network: prediction of essential targets and inhibitors. Bmc Systems Biology, 2014. 8.
45. Krishnadev, O. and N. Srinivasan, Prediction of protein-protein interactions between human host and a pathogen and its application to three pathogenic bacteria. International Journal of Biological Macromolecules, 2011. 48(4): p. 613-619.
46. Antunes, A., I. Martin-Verstraete, and B. Dupuy, CcpA-mediated repression of Clostridium difficile toxin gene expression. Molecular Microbiology, 2011. 79(4): p. 882-899.
47. El Meouche, I., et al., Characterization of the SigD Regulon of C. difficile and Its Positive Control of Toxin Production through the Regulation of tcdR. Plos One, 2013. 8(12).
48. Matamouros, S., P. England, and B. Dupuy, Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Molecular Microbiology, 2007. 64(5): p. 1274-1288.
49. Fimlaid, K.A., et al., Global Analysis of the Sporulation Pathway of Clostridium difficile. Plos Genetics, 2013. 9(8).
50. Antunes, A., et al., Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Research, 2012. 40(21): p. 10701-10718.
51. Novichkov, P.S., et al., RegPrecise 3.0-A resource for genome-scale exploration of transcriptional regulation in bacteria. Bmc Genomics, 2013. 14.
52. Mani, N. and B. Dupuy, Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(10): p. 5844-5849.
53. Dineen, S.S., et al., Repression of Clostridium difficile toxin gene expression by CodY. Molecular Microbiology, 2007. 66(1): p. 206-219.
54. Saujet, L., et al., The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in Clostridium difficile. Journal of Bacteriology, 2011. 193(13): p. 3186-3196.
55. Walter, B.M., et al., The LexA regulated genes of the Clostridium difficile. Bmc Microbiology, 2014. 14.
56. Salgado, H., et al., RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Research, 2013. 41(D1): p. D203-D213.
57. Weber, M., et al., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 2007. 39(4): p. 457-466.
58. Lu, P., et al., Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnology, 2007. 25(1): p. 117-124.
59. Johansson, R., System modeling and identification. 1993: Prentice-hall.
60. Li, C.W. and B.S. Chen, Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data. Disease Markers, 2016.
61. Shannon, P., et al., Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 2003. 13(11): p. 2498-2504.
62. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 2009. 37(1): p. 1-13.
63. Hesson, L.B., et al., Altered promoter nucleosome positioning is an early event in gene silencing. Epigenetics, 2014. 9(10): p. 1422-1430.
64. Fernandez-Jimenez, N., et al., Coregulation and modulation of NF kappa B-related genes in celiac disease: uncovered aspects of gut mucosal inflammation. Human Molecular Genetics, 2014. 23(5): p. 1298-1310.
65. Dembek, M., et al., High-Throughput Analysis of Gene Essentiality and Sporulation in Clostridium difficile. Mbio, 2015. 6(2).
66. Just, I., et al., The Enterotoxin from Clostridium-Difficile (Toxa) Monoglucosylates the Rho-Proteins. Journal of Biological Chemistry, 1995. 270(23): p. 13932-13936.
67. Chen, S.Y., et al., The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins. Toxins, 2015. 7(12): p. 5254-5267.
68. Kovacs, J.J., et al., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular Cell, 2005. 18(5): p. 601-607.
69. Janvilisri, T., et al., Microarray Identification of Clostridium difficile Core Components and Divergent Regions Associated with Host Origin. Journal of Bacteriology, 2009. 191(12): p. 3881-3891.
70. Liliental, J., et al., Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Current Biology, 2000. 10(7): p. 401-404.
71. Farrow, M.A., et al., Clostridium difficile toxin B-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(46): p. 18674-18679.
72. Seo, J.H., et al., ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation. Nature Communications, 2016. 7.
73. Boyd, C.D. and G.A. O'Toole, Second Messenger Regulation of Biofilm Formation: Breakthroughs in Understanding c-di-GMP Effector Systems. Annual Review of Cell and Developmental Biology, Vol 28, 2012. 28: p. 439-462.
74. Brekasis, D. and M.S.B. Paget, A novel sensor of NADH/NAD(+) redox poise in Streptomyces coelicolor A3(2). Embo Journal, 2003. 22(18): p. 4856-4865.
75. Kosmaczewski, S.G., et al., The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. Embo Reports, 2014. 15(12): p. 1278-1285.
76. Hansen, A., et al., The P2Y(6) Receptor Mediates Clostridium difficile Toxin-Induced CXCL8/IL-8 Production and Intestinal Epithelial Barrier Dysfunction. Plos One, 2013. 8(11).
77. Sun, M.L., et al., Lysine acetylation regulates the activity of Escherichia coli S-adenosylmethionine synthase. Acta Biochimica Et Biophysica Sinica, 2016. 48(8): p. 723-731.
78. Girinathan, B.P., S.E. Braun, and R. Govind, Clostridium difficile glutamate dehydrogenase is a secreted enzyme that confers resistance to H2O2. Microbiology-Sgm, 2014. 160: p. 47-55.
79. Shen, Y., et al., Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. Journal of Cellular and Molecular Medicine, 2016. 20(3): p. 537-548.
80. Shah, D., et al., Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance. Expert Review of Anti-Infective Therapy, 2010. 8(5): p. 555-564.
81. Garey, K.W., et al., Meta-analysis to assess risk factors for recurrent Clostridium difficile infection. Journal of Hospital Infection, 2008. 70(4): p. 298-304.
82. Louie, T.J., et al., Fidaxomicin versus Vancomycin for Clostridium difficile Infection. New England Journal of Medicine, 2011. 364(5): p. 422-431.
83. Mulvey, G.L., et al., Therapeutic potential of egg yolk antibodies for treating Clostridium difficile infection. Journal of Medical Microbiology, 2011. 60(8): p. 1181-1187.
84. Ochsner, U.A., et al., Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model. Journal of Antimicrobial Chemotherapy, 2009. 63(5): p. 964-971.
85. Tesfazghi, M., et al., The Recruitment of the Transcription Factor YY1 to DNA Damage Sites in Human Cells. Faseb Journal, 2015. 29.
86. Baggiolini, M. and I. Clarklewis, Interleukin-8, a Chemotactic and Inflammatory Cytokine. Febs Letters, 1992. 307(1): p. 97-101.
87. Chumbler, N.M., et al., Clostridium difficile Toxin B Causes Epithelial Cell Necrosis through an Autoprocessing-Independent Mechanism. Plos Pathogens, 2012. 8(12).
88. Sun, C.L., et al., Recombinant Clostridium difficile toxin B induces endoplasmic reticulum stress in mouse colonal carcinoma cells. Acta Biochimica Et Biophysica Sinica, 2014. 46(11): p. 973-981.
89. Lyras, D., et al., Toxin B is essential for virulence of Clostridium difficile. Nature, 2009. 458(7242): p. 1176-1181.
90. Kuehne, S.A., et al., The role of toxin A and toxin B in Clostridium difficile infection. Nature, 2010. 467(7316): p. 711-U97.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *