|
[1] A. de Cheveigné, & H. Kawahara. (2002). YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4), 1917-1930 [2] A. Noll. (1967). Cepstrum Pitch Determination. Journal of the Acoustical Society America, 41(2), 293-309. [3] T. Fujishima. (1999). Realtime chord recognition of musical sound: A system using common lisp music. In Proceedings of the International Computer Music Conference, 464-467. [4] A. Sheh, & Daniel, P.W. Ellis. (2003). Chord Segmentation and Recognition using EM-Trained Hidden Markov Models. In Proceedings of the International Conference on Music Information Retrieval, 3, 183-189. [5] Hung-Chen Chen, & Arbee, L. P. Chen. (2001). A music recommendation system based on music data grouping and user interests. Proceedings of the tenth international conference on Information and knowledge management, 231-238. [6] Ja-Hwung Su, Hsin-Ho Yeh, Philip S. Yu, & Vincent S., Tseng. (2010). Music Recommendation Using Content and Context Information Mining. IEEE Intelligent Systems, 25(1), 16-26. [7] J. C. Brown. (1999). Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. The Journal of the Acoustical Society of America, 105(3), 1933-1941. [8] T. Kitahara, M. Goto, & H. G. Okuno. (2003). Musical instrument identification based on F0-dependent multivariate normal distribution. In Proceedings of Acoustics, Speech, and Signal Processing, 5, V-421. [9] J. Marques, & P. Moreno. (1999) A study of musical instrument classification using Gaussian mixture models and support vector machines. Compaq, 99(4). [10] A. Eronen. (2001). Comparison of features for musical instrument recognition. In Proc. IEEE Workshop Appl. Signal Process, Audio Acoust., 19–22. [11] J. C. Brown, O. Houix, & S. McAdams. (2001). Feature dependence in the automatic identification of musical woodwind instruments. The Journal of the Acoustical Society of America, 109(3), 1064–1072. [12] G. Agostini, M. Longari, & E. Poolastri. (2003). Musical instrument timbres classification with spectral features. EURASIP Journal on Applied Signal Processing, 2003(1). 5–14. [13] I. Kaminskyj, & T. Czaszejko. (2005). Automatic recognition of isolated monophonic musical instrument sounds using kNN. Journal of Intelligent Information Systems, 24(2/3), 199–221. [14] E. M. Hornbostel, & C. Sachs. (1914). Zeitschrift für Ethnologie German: Braunschweig, A. Limbach. [15] S. Md Saha Goutam. (2012). Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition. Speech Communication, 54(4), 543–565. [16] http://impossible-music.wikia.com/wiki/Microsoft_GS_Wavetable_Synth [17] B. Gold, N. Morgan, & D. Ellis. (2011). Speech and audio signal processing: processing and perception of speech and music. John Wiley & Sons. [18] N. S. Roger. (1964). Circularity in judgments of relative pitch. Journal of the Acoustic Society of America, 36(212), 2346–2353. [19] T. Cho, & J. P. Bello. (2014). On the relative importance of individual components of chord recognition systems. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2), 477-492. [20] B. E. Boser, I. M. Guyon, & V. N. Vapnik. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, 144-152. [21] M. B. Christopher. (2006). Pattern Recognition and Machine Learning (1st ed). America: Springer. [22] Hsu Chih-Wei, & Lin Chih-Jen (2002). A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks. [23] Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael, Ringgaard, & Chih-Jen Lin. (2010). Training and testing low-degree polynomial data mappings via linear SVM. J. Machine Learning Research, 11, 1471–1490. [24] F. Pedregosa et al. (2011). Scikit-learn: Machine Learning in Python. JMLR 12, 2825-2830. [25] D. E. Rumelhart, G. E. Hinton, & R. J. Williams. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3), 1. [26] S. Shai. (2011). Online Learning and Online Convex Optimization. Foundations and Trends® in Machine Learning, 107–194. [27] J. Mairal, F. Bach, J. Ponce, & G. Sapiro. (2009). Online dictionary learning for sparse coding. In Proceedings of the 26th annual international conference on machine learning, 689-696. [28] M. Schmidt. (2005). Least squares optimization with l1-norm regularization. CS542B Project Report of The University of British Columbia, 14-18. [29] K. Pearson. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, 2(6), 559–572. [30] J. P. Bello et al. (2005). A tutorial on onset detection in music signals. IEEE Transactions on speech and audio processing, 13(5), 1035-1047.
|